HIGH CURRENT BUSHINGS

SERIES PTHR

STORAGE, OPERATING
AND MAINTENANCE INSTRUCTIONS
INDEX

1 DESCRIPTION ...3
 1.1 GENERAL...3
 1.2 SAFETY...3
 1.3 TECHNICAL CHARACTERISTICS..3
 1.4 CURRENT RATINGS..4
 1.5 TYPE OF DIELECTRIC..4
 1.6 NAME PLATE ..4

2 MOUNTING INSTRUCTIONS ..4
 2.1 PACKING...4
 2.2 ACCEPTANCE ...5
 2.3 STORAGE ..5
 2.4 LIFTING AND TRANSPORTATION ...5
 2.5 SHIPMENT TO THE END USER ..6
 2.6 INSTALLATION ON THE TRANSFORMER ..6
 2.7 OIL FILLING OF THE BUSHING’S CONDUCTOR ...6
 2.8 CONNECTION TO BUCHHOLZ RELAY ...7

3 SERVICE AND MAINTENANCE ..7
 3.1 METAL PARTS ...7
 3.2 CHECKS AFTER INSTALLATION ...7
 3.3 MAINTENANCE ...8
 3.4 DISASSEMBLY OF THE BUSHING ...8
 3.5 MEASUREMENT OF DIELECTRIC LOSSES ...9
1 DESCRIPTION

1.1 GENERAL

These instructions are applicable to the resin paper condenser type bushings of series “PTHR” for insulation class 25 kV and 34,5 kV and give all general information to be followed from the receipt of bushings until their installation on the transformer. Other information are given regarding their service and maintenance.

They are manufactured and tested in compliance with Standards:

- IEEE C57.19.01-2000 - “Characteristics and Dimensions for Outdoor Apparatus Bushings”;
- IEEE C57.19.00 – 1991 - “Requirements and Test Procedure for Outdoor Power Apparatus Bushings”.

Design, components and manufacturing technology guarantee an average lifetime longer than 30 years, in normal operation conditions.

The designation of the bushing is made as in the following example:

PTH8 25.150.9000.X

- **P**: Condenser bushing (“P” from Italian word “Passante”)
- **T**: Transformer
- **H**: High current
- **R**: Resin impregnated paper technology (RIP)
- **S**: Nominal System Voltage (in kV)
- **BIL**: Basic Insulation Level (in kV)
- **9000**: Rated Current (in A)
- **X**: CT pocket length:
 - **S**: Short (K = 4”)
 - **M**: Medium (K = 12”)
 - **L**: Long (K = 21”)

1.2 SAFETY

This manual must be available to the personnel responsible of the installation, operation and maintenance of the bushings.

The installation, operation and maintenance of the bushings present conditions of no safety and it is necessary to follow carefully specific procedures and instructions. No compliance with these procedures and instructions can involve very severe and dangerous conditions for the personnel and the property.

Please follow carefully all the instructions of the manual and pay attention to the WARNING (severe hazard), and CAUTION (minor hazard) signs.

1.3 TECHNICAL CHARACTERISTICS

These bushings are capacitance-graded type, resin impregnated paper, provided for operation with the upper part in the open air (for highly polluted atmosphere) and with the lower part immersed in the transformer oil (see fig. 1).

The body of the bushing is of epoxy resin impregnated paper, condenser execution to improve radial and longitudinal distribution of electric gradients.

Every bushing can be provided, on request, with an under-flange elongation – K – for CT accommodation in accordance with IEEE Standard.
Mechanical coupling among the components is obtained by springs placed at the lower extremity of the bushing. All the gaskets are O-ring type, in Fluorocarbon elastomer (FPM). Flat gaskets are also provided in order to prevent the contact between porcelain and metal parts.

The inner conductor is a single piece of aluminium alloy casting, with IACS conductivity 55%.

As reference consider that:

- Copper in drawn tube has IACS 98.3%;
- Aluminium in drawn tube has IACS 44.7%.

In the air extremity the connection surface is silver-plated, to improve the electrical contact with the bus bar, which is normally enclosed in a metal clad bus duct. This connection is accomplished by means of two or more terminals.

In the oil side the inner conductor is provided with one or more terminals for connection to the transformer winding.

1.4 CURRENT RATINGS

The PTHR bushings are designed to connect an oil filled transformer winding to a segregated or non segregated bus duct. The bushing current rating is guaranteed for the following environmental conditions:

- Maximum, hot spot, enclosure and support structure temperature \(T_{\text{S}} \) = 80°C;
- Transformer oil temperature \(T_{\text{O}} \) = 95°C;
- Maximum, hot spot, bushing conductor temperature \(T_{\text{C}} \) = 120°C;
- Silver plated terminal temperature 105°C;
- Maximum ambient air temperature 40°C.

PTHR bushings will function properly regardless of the surrounding air temperature inside the bus duct, provided the maximum limits of \(T_{\text{S}} \) and \(T_{\text{C}} \) designated above, are observed.

1.5 TYPE OF DIELECTRIC

PTHR bushings are made of epoxy resin impregnated paper. This material has:

- High dielectric characteristics;
- Low dielectric losses also at high temperatures.

The interspace between the condenser core of resin paper and the porcelain envelope is filled with a dry foam material (polylol-isocyanate); with this solution there are not the problems due to the oil presence and, in particular, the bushing can be mounted in any position.

The bottom part of the bushing is painted with a waterproof yellow colour enamel, for protection against the humidity.

1.6 NAME PLATE

Each bushing is provided with a name plate, with serial number and all the electrical data, in accordance with the prescriptions of IEEE Standards.

The plate (fig. 2) is made of aluminium and is fixed on the flange by nails. On the plates the following information are indicated:

- Type of bushing
- Identification number
- Insulating voltages (kV)
- Rated current (A)
- Serial number
- Month and year of production
- Standard reference
- Length below mounting surface (mm)
- Weight (Kg)
- C1: Capacitance measured between HV terminal and PF tap (pF)
- C2: Capacitance measured between PF tap and flange (pF)
- UST P.F. at 20 °C: Power factor (P.F.) measured from conductor to tap at 10 kV and referred to 20°C by the Ungrounded Specimen Test (UST)

![Name plate detail](image)

Fig. 2

The month of production is indicated by a code, as follows:

A = January L = July
B = February M = August
C = March P = September
D = April R = October
E = May S = November
H = June T = December

2 MOUNTING INSTRUCTIONS

2.1 PACKING

PTHR bushings are normally shipped in horizontal position in wooden cases of 3 pieces, in order to reduce packing volumes.

Every bushing is protected with a polyethylene bag hermetically sealed and containing a silicagel bag (fig.3); in such a way the bushing is protected in dry air against the humidity of the ambient.
If a long storage - above one year - is expected, we suggest to install a special protection canister, supplied on request.

2.2 ACCEPTANCE

Upon receipt of the goods the Customer should operate as follows:

- Check the external surfaces of the packing cases:
 - No sign of damage shall be found;
 - The shockwatch indicator, placed in the external part of each packing case (fig. 4), must be white (NOT ACTIVATED).

- If the shockwatch indicator is red (ACTIVATED) don’t refuse shipment, make a notation on delivery receipt and inspect for damage as follows:
 - Open the packing case by removing its cover;
 - Make sure that the anchoring elements are in order and securely fixed;
 - Make sure that there are no breaks or broken parts.

Please consider that each bushing has been tested with the tail immersed in oil and so some oil traces can be found. In any case no leakage is possible, because the bushings don’t contain oil.

In case any damage is found, leave the bushing in original packaging and request an immediate inspection from carrier within 15 days of delivery.

Moreover, give the forwarding agent a written claim and notify the manufacturer with the details of the packing list, including the number of the case and the serial number of the bushing.

2.3 STORAGE

During the storage period, before the installation of the bushing on the transformer, it is necessary to have the utmost care in order to avoid that the bottom part of the bushing remains a long time in humid air.

The humidity can be absorbed by the resin paper with deterioration of the dielectric characteristics (increase of dielectric losses and reduction of dielectric superficial strength).

CAUTION

Until the moment of installation on the transformer, the bushing must be considered as an equipment of indoor installation.

For this reason, it is better to store the bushings in a closed room. They must be kept in their original packing, held in the polyethylene bag with silicagel.

Only for the bushings with a lower part protected with a sealed container these precautions are not necessary.

The temperature range acceptable for the storage is from -25 to +50 °C. For other temperature limits, please contact the manufacturer.

When the bushing is taken out from the storage is necessary to make a visual check to be sure about the good conditions of any part.

For extended indoor storage and/or for outdoor one, the manufacturer can propose two alternatives:

- Metallic enclosure filled with oil to protect the underflange side;
- Plastic rigid enclosure with silicagel dryers to protect the underflange side.

2.4 LIFTING AND TRANSPORTATION

The bushings type PTHR are sturdy, nevertheless, in order to avoid dangerous movements, it is better to follow the suggested options.

Packed bushing

The case containing the bushings can be easily lifted with a tackle by applying the ropes on the points and with the inclination as indicated in fig. 5. Some indications appear also in the packing case.
2.5 SHIPMENT TO THE END USER

The shipment of the bushing made by the transformer manufacturer, after the transformer factory tests, has to be made either with the original packing or with a new one, made with the same concepts.

Particularly the bottom part of the bushings must be enclosed by protection bags with silicagel.

Silicagel salts, used to protect the bushing from the humidity, have to be checked: if they have absorbed humidity (i.e. if their colour is pink), they have to be dried in an oven (i.e. brought back to blue colour) before being reused.

2.6 INSTALLATION ON THE TRANSFORMER

This type of bushing can be installed in the transformer in any position: vertical or horizontal or any other. Note that the accidental breaking of the porcelain envelope (due to mechanical external reasons), does not cause the leak of the transformer oil.

The connection to the plate connections has to be made by bars placed on the two sides. The clamping shall be made by non-magnetic steel screws (fig. 7).

The suggested clamping couples for inox steel screws \(R = 65 \text{ daN/mm}^2 \) are:

\[
\text{Screw M16} \Rightarrow \text{clamping couple of 10 daN m}
\]

With this clamping couple the specific middle pressures on the contact surface between connector plate and bars (considered that each screw gives a charge of 3500 daN) are:

- 160-200 daN/cm²

Specific current densities on the contact surfaces, referring to the highest currents, are:

- air side: 17.5 A/cm²
- oil side: \(32 ÷ 43 \) A/cm²

2.7 OIL FILLING OF THE BUSHING’S CONDUCTOR

It is foreseen that the bushing operates with the conductor filled with the transformer’s oil.

Normally the oil filling of the transformer is made under vacuum: the tightness system and the bushing gaskets allow to withstand this vacuum treatment.

If it is not possible to make the vacuum, the air pockets that may be formed under flange and the air in the internal bushing conductor must be eliminated operating in the following way:
• Open the hole with plug placed in the middle of the head of the bushing; to open (and close) this plug, use a hexagonal wrench of 6 mm (fig. 8);
• Open the ½” gas plug placed on the bushing flange (fig. 9). For this operation use a hexagonal wrench of 10 mm;
• Complete the transformer’s filling in order to allow the air to go out;
• When the transformer oil starts to exit, close at first the flange plug (closing moment: 50 Nm), then the other one (closing moment: 100 Nm).

3 SERVICE AND MAINTENANCE

3.1 METAL PARTS
The flange and the metallic components of the bushings are made of Aluminium alloy casting and do not require any special surface treatment/maintenance. Only in case of installation in aggressive environment (i.e.: coastal, high pollution, high salinity), it’s recommended to protect said metal parts with a layer of antitrust coating.

3.2 CHECKS AFTER INSTALLATION
After the installation on the transformer it is advisable to make a check of the bushing capacitance and tanδ. The measurement must be carried out between the HV terminal and the Power Factor tap.

The capacitance value measured in GE HV laboratory is shown in the test report of the bushings.

2.8 CONNECTION TO BUCHHOLZ RELAY
A 1/2” gas plug is placed on the bushing flange (fig. 9) in order to:

• Connect the relay tube, if foreseen;
• Eliminate the air pocket which may be formed during some executions and by the filling of the upper part of transformer not under vacuum conditions (see par. 2.7).

In this case during oil filling we suggest unscrewing the plug and leave that the air flows out. For this operation use a hexagonal wrench of 10 mm. When the oil begins to come out please close it (closing torque: 50 Nm).
The PF system is schematised in fig. 10.

![Diagram of PF system]

Fig. 10

1. Closing and grounding cap (removable)
2. Measurement electrode
3. Insulating bushing
4. Gaskets
5. Mounting flange
6. Last layer
7. Fixing screw (irremovable)

WARNING

- Don’t unscrew the screws item 7, that fix the PF flange to the bushing.
- If accidentally this operation happens the electrical contact between the internal condenser body and the flange can be damaged.

During the operation, the connection tap must be grounded or directly by screwing the tap cap or through the measuring instrument connected to the power factor tap.

3.3 MAINTENANCE

The bushings PTHR are hermetically sealed and therefore an excellent preservation in time of the dielectric properties of the resin paper is ensured. As for the preservation of the active part, these bushings require no maintenance.

It is recommended to perform every 7 years the measurement of the dielectric losses (tan delta) following the instruction under par. 5.

As for the preservation of the external surfaces, the manufacturer suggests performing the following inspections:

Porcelain

Check for chips, cracks and contamination. Minor chips maybe painted with an insulating varnish to obtain a glossy finish which will prevent dirt and moisture attack. Bushings with major chips or cracks which appreciably decrease the creepage distance should be removed from service and replaced.

Wash periodically the porcelain surfaces, on which dust, saline compounds, combustion resititates, dirt, oil and other deposits may easily collect and reduce consequently the flashover value.

HV terminals

Check the connections in order to avoid poor contacts and consequent overheating.

Take special care to the air side connections, more subject to oxidation than the oil side ones.

In case of plate connections surfaces very oxidised, clean them slightly passing a fine sandpaper, paying attention to not damage the silvered thin layer. After this operation, clean well the surfaces with a light solvent (for example alcohol).

Power factor tap

Check the proper location of the tap cap and its suitable complete screwing in order to prevent entrance of moisture.

CAUTION

- We recommend checking if the cap has been properly applied and screwed.
- Moisture entering can cause the corrosion of the tap connection contact.
- Bad contact is harmful for the good operation of the bushing.

Metal parts

It is advisable to re-paint every 5 years (10 years for indoor bushings) the metal surfaces with a paint or anti-rust coating.

3.4 DISASSEMBLY OF THE BUSHING

To disassembly the bushing, operate according to the constructive solution adopted for the transformer, in parallel with the following suggestions:

- Bring the oil until a level lower than the bushing’s flange;
- Remove the fixing screws of the top and of the bottom connections;
• Remove the bolts that fix the flange;
• Finally lift the bushing.

3.5 MEASUREMENT OF DIELECTRIC LOSSES

The Standards - IEEE Publication C57.19.01-2000 - state that the resin-paper bushings must have a tan δ less than 20x10⁻³.

However, GE bushings pass the inner test only if a tan δ 10x10⁻³ is measured.

The measurement is performed in our Test Laboratory by means of a Schering bridge (Tetex type) at the voltages requested by the Standards.

All values are shown in the Test Report.

Measurement at the voltage of 10 kV is carried out in order to have a reference value for comparison with the measurement made at site during the bushing life.

The bushing is tested by immersing the lower part into oil, feeding the HV terminal and connecting the P.F. tap to the bridge, keeping the flange connected to earth.

On the bushing mounted on the transformer the measurement can be performed in the same manner, connecting the P.F. tap to a bridge and applying a voltage of 10 kV to the HV terminal.

The bushing is considered good if a tan δ 20x10⁻³ is measured.

If a tan δ higher than the above is measured, it is necessary to disassemble the bushing from the transformer and dry it as follows:

• Unscrew the two plugs placed symmetrically on the head (fig. 8);
• Put the bushing in an oven under vacuum at about 60°C for 2 days at least.

If the above operation is not enough to have a tan δ value under the limits established by the Standards, it is necessary to ship the bushing back to the manufacturer which will replace the active part with another one of new construction.