MiCOM Agile P443

Distance Protection for Central European Applications

The MiCOM Agile P443 is the ideal choice for solidly-earthed transmission systems and isolated or compensated systems at lower system voltages. The P443 protects overhead lines and underground cables, with an unparalleled ability to accommodate applications with any method of system earthing, and for the most onerous applications with up to six distance zones. One device extends from distribution and sub-transmission up to the highest transmission voltage applications.

The MiCOMho provides fast, highly selective line protection. Advanced load blinding and disturbance detection techniques ensure stability when no tripping is required. Selectable mho and quadrilateral characteristics allow versatile deployment as the main protection for all transmission and distribution circuits.

Multiple main protection elements reside inside each relay: distance, delta directional comparison protection and directional earth/ground fault unit protection (DEF) for solidly earthed systems and a novel transient earth fault detection (TEFD) for isolated or compensated earthed systems*. This permits simplified applications and reduced spares holdings.

Applications

The P443, is supplied with a comprehensive suite of protection and control functions as standard. The configuration column of the menu is used to control which functions the user requires in the intended application and which can be disabled. Disabled functions are then completely removed from the menu, to simplify settings.

Key Benefits

- Subcycle fault clearance (0.7 to 1 cycle)
- Simple set mode: the relay determines its own settings from the protected line data
- Six distance zones offer flexibility of application
- Optional phase preference tripping logic for isolated and compensated earthed systems
- An unrivaled transient earth fault detection (TEFD) with no need to add unreliable analogue hardware relays, nor analogue processing boards *
- Integral teleprotection via MODEM, fibre, or MUX channel
- Compatibility with modern 2 Mbps communications equipment

* Only for 50 Hz systems

Protection and Control

- Distance high speed operation in less than one cycle
- Load blinder prevents spurious trips cascading through the network in extreme conditions, such as on the verge of a blackout
- Simple to deploy for a wide range of applications and voltage levels
- Power swing alarm and block, plus out of step trip
- Phase preference loop tripping logic and TEFD for isolated and compensation-earthed networks
- Distance, DEF and delta directional comparison
- Multi-shot autoreclosure with check synchronism and adaptive breaker closing
- Improved system stability by CB failure fast reset element (< 0.75 cycle)

Advanced Communications

- InterMiCOM option for end-to-end protection communications; Readily interfaces with end-to-end communications channels (56/64 kbps or E1 2 Mbps)
- Wide range of supported protocols Courier/K-Bus, IEC 60870-5-103, DNP 3.0 (EAI-485 or Ethernet) and IEC 61850
- Advanced IEC 61850 Edition 2 implementation with complete settings via SCL files
- Redundant communications with zero downtime using optional PRP/HSR technology
Functional Overview

<table>
<thead>
<tr>
<th>ANSI</th>
<th>IEC 61850</th>
<th>Features</th>
<th>P443</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>
| OptGIO | Optocoupled logic inputs | 16
| RlyGIO | Relay output contacts | 24
| PTRC | Tripping mode - single or 3-pole | 1 or 3 ph
| 21P / 21G | Distance zones | 6
| PSCH | Communication-aided schemes, PUTT, POTT, Blocking, Weak Infeed | x
| PSOF | Switch on to fault | x
| RPSB | Power swing blocking | x
| 78 | Out of step tripping | x
| 67N | Directional earth fault (DEF) unit protection | x
| TEFD | Transient earth fault detection | 1*
| 50 / 51 / 67 | OcrPTOCD/RDIR | Phase overcurrent stages | 4
| 50N / 51N / 67N | EdfPTOCD/RDIR | Earth/ground overcurrent stages | 4
| 67N | PTEF | Transient Earth Fault | 1
| 64 | SenRefPDIF | High impedance restricted earth fault | x
| 67 / 46 | NgcPTOCD/RDIR | Negative sequence overcurrent | 4
| 46BC | Broken conductor | x
| 49 | PTTR | Thermal protection | x
| 27 | PTUV | Undervoltage protection stages | 2
| 59 | PhsPTOV | Overvoltage protection stages | 2
| 59N | ResPTOV | Residual voltage protection stages | 2
| 50BF | RBRF | High speed breaker fail | x
| CTS / VTS | Current and voltage transformer supervision | x
| 79 | RREC | Autoreclose - shots supported | 4
| 25 | RSYN | Check synchronism | x
| | | No. of breakers controlled | 1
| | | Alternative setting groups | 4
| FL | RFLO | Fault locator | x
| | | Fault records | 15
| | SOE event records | 1024
| RDRE | Disturbance recorder, samples per cycle | 48
| | Number of channels in disturbance recorder analog / digital | 8/16/64
| XCBR | Circuit-breaker condition monitor | x
| | Graphical Programmable Scheme Logic (PSL) | x
| | IRIG-B time synchronism | (x)
| | InterMICO teleprotection | (x)

Key (x): denotes optional

* Only available at 50 Hz
Functional Overview

Figure 1: System overview of the P443 firmware 85

Applications

The protection functions overview table highlights the functions available.

Versatile protection for universal application
The "simple set" mode invokes an inbuilt wizard to simplify the job of the protection engineer
Main Protection Functions

Distance Protection

Six zones of protection are provided as shown in Figures 1 and 4. Three of the zones are fully configurable (forward, reverse or offset). Mho and quadrilateral (polygon) characteristics can be independently selected for the phase and ground distance elements.

The mho is shown in Figure 1 and uses well-proven principles to provide dynamic expansion for faults off the characteristic angle.

The quadrilateral characteristics (Figure 4) provide enhanced fault arc resistance coverage. An adaptive technique is used to tilt the reactance reach line of each zone and eliminate under/overreaching effects due to prefault load flow.

A settable alternative distance scheme initiates all the zone timers simultaneously and guarantees faster tripping times for evolving faults.

Blinder characteristics prevent false tripping due to encroachment of heavy loads. A superimposed current phase selector detects the faulted phase(s) and controls which of the distance elements will initiate a trip. Combined with the directional decision from a proven delta principle, secure operation of distance zones is assured.

The trip time is typically 0.7 to 1 cycle for the P443.

Tripping Time

The trip times shown in Figures 2 and 3 relate to a P443 with standard relay contacts and include the contact closure time. When fitted with High Speed-High Break (HSHB) contacts, all trip times are reduced by 3 to 4 ms. The trip time for P443/446 becomes 0.5 to 0.85 cycles. HSHB contacts can easily rupture repetitive shots of 10 A trip or close coil currents.

Power Swing Blocking (PSB)

The MiCOMho recognises power swings quickly via the superimposed currents measured by the phase selector. A conventional PSB element based on the impedance band is provided to detect slow power swings. The distance trip time for faults occurring during a power swing remains subcycle.

Out of Step Tripping - OST (P443 & P446 only)

If severe disturbances risk asynchronism in transmission networks, it may be required to separate into islands, using P443/P446 OST. Predictive mode OST initiates separation before damage occurs.
Main Protection Schemes

Pre-configured distance schemes allow single and 3-phase tripping with or without a signaling channel:
- Basic scheme logic for standalone operation (without a signaling channel)
- Trip on close logic allows accelerated tripping to be selected following manual, or auto-reclose

Carrier Aided Scheme Includes:
- Direct transfer tripping
- Permissive underreach scheme (POR)
- Permissive overreach (POR) with open breaker, weak infeed echo logic and weak infeed trip feature
- Blocking scheme
- User-defined custom schemes

The relay provides two independent teleprotection schemes each using a separate communications channel. The distance, directional and DEF functions are thus flexible in configuration, operating either in shared channel logic or in discrete modes.

Delta Directional Comparison

Superimposed voltage and current signals are used to make highly secure fault directional decisions. The respective forward/reverse decisions at each line end can be used in a teleprotection scheme for full line unit protection, as proven in the LFDC product. The advantage is that channels send even faster than for distance-aided schemes.

Directional Earth Fault (DEF)

The DEF element can be used within the aided schemes to detect high resistance ground faults. The innovative Virtual Current Polarising (VCP) feature even ensures correct operation when the fault generates negligible zero or negative sequence voltage.

The “Virtual Current Polarising” feature can be switched-off when used in non-solidly earthed systems. Traditional relays would have required an extra CT input to cover this scenario - not the MiCOMho.

Phase Preference for Petersen Coil Earthed and Isolated Systems

MiCOM P443 is equipped with phase preference tripping logic for Petersen coil earthed and isolated systems. Tripping for a cross-country fault, can be set to follow either a so-called “cyclic” logic or an “acyclic” logic to select a phase preference for the impedance measurement. 1 out of 8 priority criteria can be selected.

Transient Earth Fault Detection*

MiCOM P443 incorporates novel transient earth fault detection (TEFD) with no need to add unreliable analogue processing boards. This approach achieves the most cost-effective functional integration and protection scheme engineering. The TEFD technique works on a special frequency range centred at 220 Hz. Selecting this interharmonic spectrum avoids the 4th and 5th harmonics which are naturally prevalent in compensated networks.

InterMiCOM (Optional)

Communications

InterMiCOM allows high performance permissive and blocking type unit protection to be configured, plus transfer of any digital status information between line ends. Intertripping is supported too, with channel health monitoring and cyclical redundancy checks (CRC) on the received data for maximum message security.

InterMiCOM provides eight end-to-end signals, assignable to any function within a MiCOM relay’s programmable logic. Default fail-safe states can also be set in case of channel outage.

Two physical formats for InterMiCOM are possible:
- EIA (RS) 232 for MODEM links
- InterMiCOM™ at 56/64 kbit/s for direct fibre or multiplexed links

InterMiCOM™ also includes support for 3-terminal applications, employing the same communications topology as in successful LFCB and P540 series products. 850 nm fibre communications are used to interface with multiplexers in IEEE C37.94 format (and to G.703 (64 kbps, E1 2 Mbps), V.35 and X.21 via P590 interfaces). 1300 nm channel options are used for direct fibre teleprotection.

In 3-terminal schemes, the communications are self-healing if one leg of the triangulation fails. The end-end transfer time of permissive or blocking scheme data is typically just 5 ms for InterMiCOM™.

Backup Protection

- Four stages of both phase and earth (ground) fault protection
- Transient earth fault detection (TEFD)
- Negative sequence overcurrent and SEF (0.5% In sensitivity)
- Phase under/overvoltage protection
- Broken conductor protection
- Two stage high speed circuit-breaker failure protection

Supervisory Functions

VT Supervision (Fuse Fail)

Voltage transformer supervision is provided to detect loss of one, two or three VT signals for line VTs.

CT Supervision

Current transformer supervision is provided to detect loss of phase CT input signals.

* Only for 50 Hz systems

Figure 6 Load blinder
Control

Function Keys
Trip and close commands are facilitated from front panel hotkeys to allow direct CB control without the need to navigate to a menu. Additional in/out, on/off and enable/disable controls are easily programmed (up to 10 F-keys).

Single Breaker Autoreclose
P443 & P445 with check synchronism including adaptive closing of breaker taking into account breaker operating time. The user may select a single, two, three or four shot autoreclose cycle.

Dual Breaker Autoreclose
P446 with check synchronism including adaptive closing of breakers taking into account breakers operating time. The following additional features are offered in the P446 to permit two breaker reclosing in a leader-follower scheme:

- Two CB controls - CB1 and CB2 are assigned. The user selects which is the leader and which is the follower breaker
- Individual selection of recloser on or off
- Follower action - follows successful closing of the leader
- Reclosing after a settable delay

Alternatively the follower may:
- Wait to be closed manually
- Independent lockout and reset per breaker

Programmable Scheme Logic
Powerful graphical logic allows the user to customise the protection and control functions (See Figure 8).

The gate logic includes 32 timers, OR, AND, MAJORITY and set/reset latch logic gate functions, with the ability to invert the inputs and outputs and provide feedback.

The system is optimised to ensure that the protection outputs are not delayed by the PSL operation.

The programmable scheme logic is configured using graphical S1 Agile software, as shown in Figure 8. The relay outputs may be configured as latching ("Lockout") or self-reset.

All aspects of MiCOM P40 IED configuration are managed using the S1 Agile software (see Figure 9).

Measurement and Recording Facilities
All event, fault and disturbance records are time tagged to a resolution of 1 ms. An optional IRIG-B port is available for accurate time synchronisation.

Power System Measurements
Instantaneous and time integrated voltage, current and power measurements are provided. These may be viewed in primary or secondary values.

Figure 8 Programmable scheme logic

Figure 9 S1 Agile a powerful and intuitive PC tool suite
Quality Built-in (QBi)

Grid Solutions' QBi initiative has deployed a number of initiatives to maximise field quality. Harsh environmental coating is applied to all circuit boards to shield them from moisture and atmospheric contamination. Transit packaging has been redesigned to ISTA standards and the third generation of CPU processing boosts not only performance, but also reliability.

Communications with Remote Operators and Substation Automation

The wide range of communications options, including IEC 61850, provides interfacing with almost any type of Substation Automation or SCADA system.

The following protocols are available:
- Courier/K-Bus
- IEC 60870-5-103
- DNP 3.0 (EAI-485 or Ethernet)
- IEC 61850

Second Rear Courier Port

The optional second port is designed typically for dialup modem access by protection engineers/operators when the main port is reserved for SCADA traffic.

Case Size

P443 relays are housed in full 80TE cases, for 19" rack or flush mounting.
GE’s philosophy is one of continuous improvement in our products and solutions. Our emphasis on communication in MiCOM has become a focus which secures leadership in the digital substation. To mark this phase of evolution, the P40 Agile livery is applied to the range. P40 Agile is a mark of performance and quality, proudly available from GE, and only from GE.