KEY BENEFITS

• Full featured protection for low voltage AC motors
• Advanced automation capabilities providing customized protection and integrated automation control
• Cost effective solution - Low cost modular design
• Small footprint and compact design - With or without display, fits into standard MCC buckets
• Preconfigured logic for all standard motor starter types, EnerVista™ compatible

• Integrated motor control pushbuttons
• Remote monitoring via serial communications, Modbus RTU
• Easy installation and integration - Panel mount option
• Reduced number of devices - Replaces bi-metal overload elements, integrates timers, relays, meters, switches, indicators

APPLICATIONS

• Motor protection and management system for low voltage AC motors
• Specifically designed for Motor Control Centre applications

FEATURES

Protection and Control
• Motor Thermal Model
• Single phase / Current unbalance
• Contactor failure
• Locked/stalled rotor
• Ground fault
• Undervoltage, Overvoltage
• Overtemperature
• Acceleration Trip
• Thermistor Protection
• Starts per Hour / Time Between Starts
• Undercurrent and underpower
• Configurable motor start controller
• Undervoltage auto restart

Monitoring and Metering
• Motor operational parameters and historical data
• Process data
• Phase and ground current, power, energy, voltage
• Status of relay inputs
• Trip record and pre-trip values
• Motor statistical information

User Interface
• 40 Character LCD display
• Front Panel control push buttons and programming keypad
• 11 Motor and Relay Status LED’s
• RS485 ModBus™, 1200 - 19,200 bps

EnerVista™ Software
• State of the art software for configuration and commissioning GE Multilin products
• Document and software archiving toolset to ensure reference material and device utilities are up-to-date
• EnerVista™ Integrator providing easy integration of data in the MM2 into new or existing monitoring and control systems
Protection and Control

The MM2 is a digital motor protection system designed to protect and manage low voltage motors and driven equipment. It contains a full range of selectively enabled, self contained protection and control elements as detailed in the Functional Block Diagram and Features table.

Thermal Overload

An overload trip occurs when the thermal capacity value equals 100%. Thermal capacity used is calculated from accumulated I^2t value and chosen overload curves. True RMS current sensing ensures correct response to the heating effect of harmonics. One of 12 different I^2t time overcurrent overload curves may be selected from eight standard curves and four NEMA compatible curves.

Locked/Stalled Rotor

To help prevent damage to mechanical equipment such as pumps or fans, the MM2 will trip when the running current exceeds the stalled rotor trip level after the programmed time delay. This feature may be set to ‘OFF’ if desired, and it is disabled during motor starting.

Ground Fault

The ground fault level is measured as a percentage of the CT primary. Ground overcurrent can be detected either from the residual connection of the phase CTs or from a zero sequence CT. A delay time is set to prevent false alarms from momentary surges. Both a ground fault alarm and trip are provided. The alarm can be set below the trip level to provide an early warning of insulation breakdown.

Overtemperature

An input from motor winding thermistors is available. The MM2 can accept both positive temperature coefficient (PTC) and negative temperature coefficient (NTC) sensors. A thermistor level can be selected for both alarm and trip.

Cooling Time

After an overload trip, the thermal capacity value decreases exponentially to model the motor cooling characteristic. An overload trip can be reset when the thermal capacity value decreases to 15%. A stopped motor cooling time can be set to determine how long it takes for a stopped motor to reach steady state ambient temperature from its maximum allowable temperature.

Undercurrent/Underpower

Both undercurrent and underpower alarms and trips are provided with time delays. Protection against failed shear pin or loss of pump flow, which may result in only a small change in current, is provided by the underpower alarm.

Undervoltage

For voltage sensitive loads, a drop in voltage increases the drawn current, which may cause overheating in the motor. The undervoltage protection feature can be used to either cause a trip or generate an alarm when the voltage drops below a specified voltage setting for a programmable time delay.

Overvoltage

An overvoltage on running motor with a constant load results in decreased current. However, iron and copper losses increase, causing an increase in motor temperature. The current overload relay will not pickup this condition and provide adequate

Phase Unbalance

The MM2 monitors the percentage unbalance in the motor phase currents. If a phase current unbalance of greater than 15% exists for more than five seconds an alarm is generated. If a phase current unbalance of greater than 30% exists for more than five seconds a single phase trip occurs.
protection. The overvoltage element may be used for protecting the motor in the event of a sustained overvoltage condition.

Contactor Failure
The MM2 monitors the contactor while performing start and stop commands. If the contactor does not change status an ‘open control circuit’ or ‘welded contactor’ alarm is triggered.

Additional Alarms
The MM2 has programmable alarms to warn of a number of abnormal conditions. These include: acceleration time exceeded, abnormal inverter starter, incomplete start, motor greasing, contactor inspection, motor stop time, analog input, and process interlock switch open.

Starters
MM2 can be programmed to serve as the following types of motor starters:

- Full Voltage non-reversing,
- Full Voltage reversing,
- Wye/Delta open or close transition starter,
- Two speed starter,
- Inverter (VSD) starter,
- Slip ring (rotor resistors) and primary resistance starters,
- Autotransformer open or close transition starter,
- Duty/Standby starter,
- Soft starter

Undervoltage Auto Restart
The motor can be automatically restarted after a momentary power loss when this feature is enabled. When the control voltage drops below the dropout voltage the contactors are de-energized. The MM2 can initiate timers to restart selected drives upon the return of supply voltage. If control voltage is restored within the programmed restart time, the motor will be restarted immediately. If the control voltage takes longer to be restored, the MM2 can be programmed to attempt a restart after a programmed time delay.

Outputs
The MM2 has one or two contactors (A and B) which are used for motor starting. There are also two auxiliary programmable output relays available on the MM2, which can be assigned to any one of 31 functions.

Switched Inputs
The MM2 has up to six fixed control inputs. These are used for start A and B, stop, local isolator, and contactor A and B status. The MM2 also has up to 10 programmable switch inputs. Each input can have one of 33 interlock functions assigned to it. A function can be assigned to one interlock input only.

Analog Input
The analog input can be scaled to user defined values. High and low alarm and trip setpoints are recorded with time delays.

Monitoring and Metering
The MM2 offers advanced monitoring and metering which includes:

Metering
The MM2 meters and displays:
- current of each phase
- Ground fault leakage current
- Motor load as a % of full load current
- Thermal capacity used (%)
- % Current unbalance
- Power (kW)
- Energy (kWh)
- Voltage
- Analog input

Trip Record
When the MM2 issues a trip command a record is generated which includes the cause and pre-trip actual values.

Statistics and Maintenance
The MM2 records statistical data about relay and motor operation, allowing the user to set the interval at which routine maintenance tasks should be performed. When the times are exceeded an alarm is generated. These include:

- Motor greasing interval: number of hours between bearing lubrication
- Contactor inspection: number of starts after which the contactor contacts must be inspected for wear

Cost Effective MCC Wiring with MM2.

One MM2 is typically mounted in each starter of a motor control center.
• Maximum motor stopped time: the maximum number of hours the motor can be left shut down

User Interfaces
When ordered with the Panel Mount option, the MM2 comes equipped with a 40 character display, LED indicators, as well as programming and control push buttons.

Display and Keypad
The MM2 has a keypad and 40 character display for local control and programming without a computer. In the event of a trip, alarm, or start block, the display will automatically display a clear status message. In addition to the programming keys, the panel mount option also provides 3 control keys for starting and stopping the motor locally.

Indicator LEDs
The panel mount MM2 has nine LED’s that provide the status of the motor and relay output contacts. Two additional LED’s indicate whether the relay is in Auto or Manual control mode.

Communications
The MM2 uses a ModBus® RTU RS485 connection for communication. Up to 32 MM2s can be daisy-chained together on a single communication channel. The MM2 supports a number of baud rates, ranging from 1200 to 19,200 bps. A RS232/485 converter module may be used to connect a personal computer to the MM2.

Software
The MM2 comes with a Windows®-based configuration program called MM2PC. It allows access to all the features of the MM2 with easy to use, pull-down menus. Using this program it is possible to:
• Program or modify setpoints
• Load or save setpoints from or to a disk
• Read actual values from the MM2
• Monitor status
• Read pre-trip data and trip record
• Display dynamic trending of actual values
• Get help on any topic

Mounting Configurations
The MM2 can be ordered as either a chassis mount or panel mount relay. The chassis mount comes with all of the standard features and may be ordered with one or both of the option packages. Setpoints are loaded through the RS485 port using the MM2 PC Setup program.

Option Packages
Option package 1 increases the control and diagnostic features available. It includes:
• Process control and process inputs
• Undervoltage auto restart
• Enhanced diagnostics including alarms, pre-trip data, and historical statistics about the use and performance of the motor and drive

Option package 2 increases the protection features and input options. It includes:
• Second contactor control, including two more control inputs
• Single-phase VT input used to calculate

and display the kW and kWh absorbed by the drive
• Enhanced protection including five more protection features
• Motor winding thermistor input

EnerVista™ Software
The EnerVista™ Suite is an industry leading set of software programs that will simplify every aspect of using the MM2 relay. Tools to monitor the status of your motor, maintain your relay, and integrate information measured by the MM2 into HMI or SCADA monitoring systems are available.

EnerVista™ Launchpad
EnerVista™ Launchpad is a powerful software package that provides users with all of the setup and support tools needed for configuring and maintaining GE Multilin products. Launchpad allows configuring devices in real-time by communicating using serial, Ethernet, or modem connections, or offline by creating setting files to be sent to devices at a later time. Included in Launchpad is a document archiving and management system that ensures critical documentation is up-to-date and available when needed. Documents made available include:
• Manuals
• Application Notes
• Guideform Specifications
• Brochures
• Wiring Diagrams
• FAQs
• Service Bulletins

Viewpoint Monitoring
Viewpoint Monitoring is a powerful yet simple-to-use monitoring and data recording package for small systems. Viewpoint Monitoring provides a complete HMI package with the following functionality:
• Plug-&-Play Device Monitoring
• Single-Line Monitoring & Control
• Annunciator Alarming
• Trending Reports
Features

Front View

DISPLAY:
2 line, 40 character illuminated display communicates all messages in simple English for easy interpretation by users unfamiliar with unit.

RELAY INDICATORS:
RELAY A: Contactor A energized.
RELAY B: Contactor B energized.
AUX 1: User programmable relay 1 energized.
AUX 2: User programmable relay 2 energized.

STATUS INDICATORS:
RUNNING: Contactor is energized and motor is running.
STOPPED: Contactor is not energized and motor is not running.
TRIPPED: Contactor is not energized. Motor is not running. The MM2 has tripped the motor due to a fault. Normally a cause of trip message will be displayed.
ALARM: One or more alarm conditions are present. Normally a cause of alarm message will be displayed.
FAULT: An internal fault or abnormal condition has been detected. The MM2 may need to be replaced or serviced.

CONTROL KEYS:
AUTO: Selects operation of start via communication port.
MANUAL: Selects manual operation of motor using start key.
START A: Energize contactor A.
START B: Energize contactor B.
STOP: De-energize contactors.

PROGRAM KEYS:
ACTUAL VALUES: Press to enter actual values mode to display actual motor values such as current, ground leakage, thermal capacity.
SETPOINTS: Press to enter setpoint mode to alter or examine setpoints.
STORE: Save a newly entered setpoint.
RESET: Reset the MM2 after a trip.
MESSAGE: Move to the desired setpoint or actual value message.
VALUE: Increment or decrement currently displayed setpoint value.

Rear View

SUPPLY VOLTAGE
Required to power the MM2.

COMMUNICATIONS
RS485 2 wire serial communication port operates at 1200 – 19,200 bps for remote commands, monitoring and setpoint store. ModBus® RTU protocol.

SWITCH INPUTS
Opto-isolated 120 VAC live inputs for various interlock functions. The interlock inputs are fully programmable and can be assigned to such functions as setpoint access, plant interlock, test, and various others.

4 RELAYS
• Contactor A: direct on line/forward/wye
• Contactor B: reverse/delta
• User programmable relay [AUX 1]
• User programmable relay [AUX 2]

ANALOG INPUT
4 – 20mA input for process control monitoring/alarming/tripping.

THERMISTOR
NTC or PTC thermistor input for hot winding detection.

GROUND CT INPUT
5 amp or 500:0.025 ground fault input for readily connected phase CTs or separate core balance zero sequence CT.

www.GEMultilin.com

359
Typical Wiring

1. Relay contact state shown with control power not applied
2. Terminals marked with "*" must be connected before motor can be started
3. Direct connection with no CTs can be used for Motor full load current below 10 Amps (Typically less than 10HP).
 Note: CT Terminals rated for 6.00
Technical Specifications

PROTECTION

OVERLOAD CURVES

Trip time accuracy: ±200 ms up to 10 sec
±% of trip time over 10 sec
Directional level: ±1% of primary CT amps
Accuracy: ±0.2% of load
When time delay set to 0.00 s, expect a 1 time delay between 0 and 50 ms

SINGLE PHASE (PHASE UNBALANCE)

Range: Greater than 30% of I/L trip, alarm
Accuracy: ±2 percentage points
Trip delay: 5 sec, ±1 sec
Calculation method: If I/L > I/L1, then I/L1 = I/L1 x 100
If I/L < I/L1, then I/L1 = I/L1 x 100
Where: I/L = average phase currents
I/L1 = current in a phase with maximum deviation from I/L1 = motor full load current setting

UNDERCURRENT

Range: 10 – 100% of motor FLC, or OFF
Delay range: 1 – 60 sec
Accuracy: ±1 sec

UNDERVOLTAGE - SUPPLY VOLTAGE

Undervoltage: 65% of nominal (120 VAC or 240 VAC)
immediate restart for maximum dip time of 0.1 – 0.5 sec or OFF
delayed restart for maximum dip time of 0.1 – 10 sec/unlimited time
Delay restart range: 0.2 – 300 sec
Delay restart accuracy: ±0.2 sec

MONITORING

VOLTAGE INPUT/POWER READING

Conversion: True RMS, sample time 1.67 ms
Voltage full scale: 1.5 x VT primary
Voltage accuracy: ±2% of VT primary or ±2% of reading (whichever is greater)
Power accuracy: ±5% of nominal or ±5% of reading (whichever is greater)
Input voltage: Nominal 120 VAC or 110 VAC
Max 150 VAC
VT burden: 0.01 VA

ACCELERATION TIME

Range: 0.5 – 125 sec, or OFF
Accuracy: ±0.5 sec

THERMAL COOLING TIMES

Range: 5 – 1089 min when motor stopped
250% of motor stoppage when motor running
Accuracy: ±1 min

STALLED ROTOR

Range: 1.15 to 4.5 x FLC, or OFF
Delay range: 0.5 to 5 sec
Accuracy: ±0.5 sec

METERING

PHASE CURRENT INPUTS

Conversion: True RMS, sample time 1.67 ms
Range: 0.1 – 8 phase CT primary amps setpoint
Full scale: 8 x phase CT primary amps setpoint
Accuracy: ±5% of Phase CT primary amps setpoint
±% of reading, whichever is greater

GROUND FAULT CURRENT INPUT

Conversion: True RMS, sample time 1.67 ms
Range: 0.1 to 1.0 x G/F CT primary amps setpoint
0.5 to 15.0 G/F (0.025 CT)
Full scale: 1.5 x G/F CT primary amps setpoint
Accuracy: ±4% of G/F CT primary amps setpoint
±5% or 100 (whichever is greater)

OUTPUTS

RELAY CONTACTS

MM2 CONTACTOR A & B AND AUX 2 OUTPUT RELAY CONTACTS

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>MAKE/CARRY</th>
<th>MAKE/CARRY</th>
<th>BREAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESISTIVE 30 VDC</td>
<td>10 A</td>
<td>10 A</td>
<td>10 A</td>
</tr>
<tr>
<td>INDUCTIVE (L/R = 7m)</td>
<td>10 A</td>
<td>10 A</td>
<td>10 A</td>
</tr>
<tr>
<td>RESISTIVE 120 VAC</td>
<td>10 A</td>
<td>10 A</td>
<td>10 A</td>
</tr>
<tr>
<td>INDUCTIVE (PP = 0.4)</td>
<td>10 A</td>
<td>10 A</td>
<td>10 A</td>
</tr>
<tr>
<td>CONFIGURATION</td>
<td>10 A</td>
<td>10 A</td>
<td>10 A</td>
</tr>
<tr>
<td>CONTACT MATERIAL</td>
<td>SILVER ALLOY</td>
<td>SILVER ALLOY</td>
<td>SILVER ALLOY</td>
</tr>
<tr>
<td>MAX OPERATING VOLTAGE</td>
<td>280 VAC, 250 VDC</td>
<td>280 VAC, 250 VDC</td>
<td>280 VAC, 250 VDC</td>
</tr>
</tbody>
</table>

MM2 AUX 1 OUTPUT RELAY

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>MAKE/CARRY</th>
<th>MAKE/CARRY</th>
<th>BREAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESISTIVE 30 VDC</td>
<td>5 A</td>
<td>5 A</td>
<td>5 A</td>
</tr>
<tr>
<td>INDUCTIVE (L/R = 7m)</td>
<td>5 A</td>
<td>5 A</td>
<td>5 A</td>
</tr>
<tr>
<td>RESISTIVE 120 VAC</td>
<td>5 A</td>
<td>5 A</td>
<td>5 A</td>
</tr>
<tr>
<td>INDUCTIVE (PP = 0.4)</td>
<td>5 A</td>
<td>5 A</td>
<td>5 A</td>
</tr>
<tr>
<td>CONFIGURATION</td>
<td>AUX RELAY 1 – DUAL FORM C</td>
<td>AUX RELAY 1 – DUAL FORM C</td>
<td>AUX RELAY 1 – DUAL FORM C</td>
</tr>
<tr>
<td>CONTACT MATERIAL</td>
<td>SILVER ALLOY</td>
<td>SILVER ALLOY</td>
<td>SILVER ALLOY</td>
</tr>
<tr>
<td>MAX OPERATING VOLTAGE</td>
<td>280 VAC, 125 VDC</td>
<td>280 VAC, 125 VDC</td>
<td>280 VAC, 125 VDC</td>
</tr>
</tbody>
</table>

THERMISTOR INPUTS

Sensor types: positive temperature coefficient PTC
RTH-IN – 30,000, negative temperature coefficient
NTC:
RTH-IN – 30,000
Delay:
Accuracy: ±5% or 100 (whichever is greater)
 ANALOGUE INPUT

Range: 4 – 20 mA
Accuracy: ±3% full scale
Alarm:
programmable 4 – 20 mA
programmable 4 – 20 mA
CT INPUTS

<table>
<thead>
<tr>
<th>CT INPUT (A)</th>
<th>BURDEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phases CT (1 A)</td>
<td>5</td>
</tr>
<tr>
<td>Phases CT (100)</td>
<td>5</td>
</tr>
<tr>
<td>Ground CT (5 A)</td>
<td>100</td>
</tr>
<tr>
<td>Ground CT (0.025)</td>
<td>100</td>
</tr>
</tbody>
</table>

WITHSTAND

1 SEC x CT | 5 SEC x CT | CONTINUOUS x CT

Phases CT (1 A)	100	40
Phases CT (100)	100	40
Ground CT (5 A)	100	40
50.025 GROUND INPUT WITHSTAND	150 mA	Maximum

50.025 input can be driven by a GE Multilin 50.025 CT

POWER SUPPLY

120 VOLTAGE

AC nominal: 120 VAC, range 80 – 135 VAC
Frequency: 240 VAC, range 150 – 250 VAC
Max continuous: 280 VAC

COMMUNICATION

Type: RS485 2 wire, half duplex
Baud rate: 1,200 – 19,200 bps
Protocol: ModBus® RTU
Functions: Read/write setpoints, read actual values, execute commands, read coil status, read device status, loopback test

ENVIRONMENTAL

Pollution degree: 2
Overvoltage category: 2
Insulation voltage: 300 V
Operating temperature range: 0° C to 60° C
Dust and moisture rating: NEMA Type 12 + 12k
IP Class: IEC 529-IP53

TYPE TESTS

CSA: Approved file no. LR41286
UL: Recognized file no. E83849
ANSI/IEEE C37.90.1 oscillatory/ fast realtime transients
IEC 801-4 electrical fast transient/burst requirements
IEC 225-5 5 kV impulse voltage test
RFS1: 150 MHz, 450 MHz 5 W handline transmitter @ 25 cm
Static: IEC 801-2 electrostatic discharge
Hipot: 1500 V, 1 min all input >30 V

PACKAGING

Max weight: 4 lbs (1.8 kg)
Shipping dimensions: 8.3” x 5.625” x 5.8” (211 mm x 143 mm x 147 mm)

Fuse Type / Rating

0.5 A 250 V
Fast blow, high breaking capacity

INSTALLATION

WARNING: HAZARD may result if the product is not used for its intended purpose

Ventilation requirements: None
Cleaning requirements: None

INSTALLATION

Conforms to IEC 947-1, IEC 1010-1
CSA: Approved file no. LR41286
UL: Recognized under E83849
Quality assurance system: Registered by QMS to CSA CAN3 Z299.3-1985 and ISO 9000-1994

*Specifications subject to change without notice.
Model Table: The MM2 is available in chassis mount or a panel mount model. Both models may be enhanced with two option packages. The panel mount model with display may only be ordered with both options.

<table>
<thead>
<tr>
<th>Protection and Control</th>
<th>Standard</th>
<th>Option 1 Adds</th>
<th>Option 2 Adds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overload (49/51)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phase unbalance (46)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>welded/open contactor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undervoltage auto restart diagnostics</td>
<td></td>
<td></td>
<td>Ground fault (50G/51G), rapid trip locked/stalled rotor (48)</td>
</tr>
<tr>
<td>overtemperature thermistor (49)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>undercurrent/underpower (37)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>overvoltage (59)/undervoltage (27)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Standard</th>
<th>Option 1 Adds</th>
<th>Option 2 Adds</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Programmable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Analog</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermistor input</td>
<td></td>
<td></td>
<td>Single-phase voltage input for kW and kWh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relays</th>
<th>Standard</th>
<th>Option 1 Adds</th>
<th>Option 2 Adds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis Mount control (A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auxiliary 1 and 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chassis Mount control (B)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mounting Configurations</th>
<th>Standard</th>
<th>Option 1 Adds</th>
<th>Option 2 Adds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis Mount</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel Mount with display</td>
<td></td>
<td></td>
<td>Panel mount with display available when both options are ordered</td>
</tr>
</tbody>
</table>

MM2 Ordering

<table>
<thead>
<tr>
<th>MM2</th>
<th>* * * *</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Panel Mount with display *</td>
</tr>
<tr>
<td>2</td>
<td>Chassis Mount (black box)</td>
</tr>
<tr>
<td>120</td>
<td>Control voltage 120 VAC</td>
</tr>
<tr>
<td>240</td>
<td>Control voltage 240 VAC</td>
</tr>
</tbody>
</table>

Note: *Only available when both options are ordered.

Modifications

MOD601: 240 VAC switch inputs – allows the use of external 240 VAC supply to power switch inputs
MOD602: 24 – 48 VDC switch inputs – allows the use of external 24 – 48 VDC supply to power switch inputs
MOD603: ESD relay – converts AUX 2 relay into an emergency shutdown relay
MOD605: Removable rear terminals – allows terminals 13 – 58 to be unplugged from the MM2
MOD610: Conformal coating
MOD615: MM2 with remote display

Accessories for the MM2

- Viewpoint Monitoring VP-1
- 50.0.025 Ground CT HGF3
- 5 A Phase CT
- 1 A Phase CT

Visit www.GEMultilin.com/MM2 to:

- View Guideform Specifications
- Download the instruction manual
- Review applications notes and support documents
- Buy an MM2 online