Switchgear for Direct Current (DC) Applications

Disconnectors, Switches and Circuit Breakers
Today’s Environment

Globally the utility environment is becoming more complex and utilities are having to manage new challenges such as:

- Increasing demand for electricity
- Connection of remote generation
- Growth of distant offshore wind
- Integration of variable renewable generation
- Need for security of supply
- Reduce carbon footprint
- Land costs becoming more expensive
- New right-of-way access permits increasing difficult to obtain

The only choice for many utilities is to restructure their grid systems to manage these challenges. Utilities are looking for cost effective solutions to transfer power and to improve the quality, stability and reliability of the grid which will anticipate their needs for the next 20 to 50 years.

HVDC Overview

High Voltage Direct Current (HVDC) solutions are ideal for supporting existing AC transmission systems or for building new power highways. HVDC is a system which interconnects two AC networks, converting AC voltage to DC voltage, and DC voltage to AC voltage utilizing power electronics technology. HVDC systems enable transfer of power, interconnection of grids, integration of renewables and maximize grid performance.

Move more Power, further

Ultra HVDC can operate at voltages up to 800kV enabling bulk transport of electricity over long distances. HVDC systems have lower losses than AC systems and can transmit up to 3 times more power than AC networks. HVDC systems are more economical than HVAC for schemes with transmission distances more than approximately 700 km (~400 miles). The use of insulated cables in both submarine and underground applications, in combination with HVDC, allows more power to be transmitted across long water crossings, or buried out of sight adjacent to roads, railways and tunnels, which may accelerate the permitting process compared to AC or overhead DC transmission alternatives.

Integrate Renewables

HVDC is a versatile and flexible technology, making it an ideal solution for integrating renewable energy in modern grids such as remote windfarms, both offshore and onshore. HVDC can provide additional controllability to network operators to support efficient management of transmission of mixed energy sources, including the increasing use of renewables combined with energy storage.

Interconnect Grids

HVDC enables the exchange of energy between two AC networks. In some cases, this is the only means of neighboring utilities exchanging energy since they operate at different frequencies or may not be synchronized. An HVDC interconnection has many benefits, such as allowing neighboring utilities to reduce and share ‘spinning reserve’, giving access to other lower cost sources of energy.

Improve Quality, Stability and Maximize Network Performance

All HVDC solutions provide a ‘firewall’ to prevent disturbances propagating from one network to another. They provide fast and highly controllable power transfer and today can provide reactive power into the local AC network to improve stability and quality.

Back to Back HVDC Interconnection
The GE Advantage

GE’s HVDC Switches and Disconnectors are developed based on the highest standards for performance, ratings, user convenience and reliability. Every model is designed utilizing 3D design tools and analysis software to achieve the highest performance. Switches and Disconnectors are thoroughly type tested and subject to routine tests to meet or exceed the latest standards and requirements. Dependent on customer requirements, GE is able to design and supply highly customized products.

Based on years of global experience, deep domain expertise, manufacturing excellence and several deployments across multiple applications and industries, GE has dedicated projects teams working in partnership with our customers to ensure successful equipment implementations. GE provides customers with the following competitive advantages.

Robust Design Leveraging Cutting Edge Technology Provides High Performance and Lower Total Cost of Ownership

- Durable spring-spring mechanism with 5 times more reliability than hydraulic, pneumatic or hydraulic-spring designs*
- HVDC switches are specifically designed to address HVDC constraints and are derived from conventional AC breaker with self-blast technology, with improved technology and performances for DC applications.
- HVDC disconnectors use the latest technology of contacts in order to ensure maximum protection against pollution and ice, ensuring limited overhead clearance and a very short phase to phase distances, without middle electrode.
- All switchgear is designed to operate within extreme environmental conditions with available options for high elevation, very low and high temperatures (-60 °C to +60 °C), seismic zones, polluted areas, and corrosive atmospheres.

*according to CIGRE report 510.

Manufacturing Excellence to Ensure Highest Quality Standards

- Global manufacturing sites certified according to ISO 9001 and ISO 14001 standards
- Products are manufactured utilizing GE’s Advanced Production System ensuring the highest level of quality
- Customized designs available to meet customer application requirements

Extensive Research, Testing and Proven Field Experience Resulting in Enhanced Reliability

- R&D Competence Centers and associated testing laboratories assure extensive research and testing for DC applications
- Specific HVDC tests are carried out in laboratories to ensure best performance over life time of assets
- 400,000+ units of circuit breakers and disconnectors for AC and DC installed worldwide and in service in more than 100 countries

Optional Features for Enhanced System Compatibility, Digital Integration and In-House Expertise

- Complete monitoring system available for asset management and digital substation integration
- Full life-cycle support for products, spare parts management and technical training by GE Subject Matter Experts
- Local Product Sales Specialists provide strong product and technical support

HVDC Substation Bina, India
GE’s HVDC Technologies

Line Commutated Converters
Line Commutated Converter is a mature cost effective HVDC technology based on thyristor power semiconductors, which enables the bulk transfer of power of up to 8 GW with low losses and inherent DC fault protection. LCC is available as point to point overhead line and submarine/land cable and is ideally suited for back to back schemes.

Voltage Source Converters
Voltage Source Converter is a newer technology based on power transistors with a reduced footprint compared to LCC technology. VSC is an ideal technology for submarine/land cable interconnection, integrating renewables, offshore and urban infeed applications. VSC is available as point to point, back to back, submarine/land cable and offshore schemes. VSC has distinct technical advantages over the traditional LCC schemes because it creates an AC waveform that allows the scheme to control real and reactive power independently and transmit real power into a very weak AC network, which is not possible with LCC.

HVDC Schemes

Back to Back Scheme
Suitable for frequency changing and asynchronous connections. This scheme provides fast accurate power flow, limiting the spread of cascading faults and provides increased system flexibility relative to new generation requirements. Once interconnected, the two systems’ daily and seasonal cost differences can also be optimized.

Point to Point Scheme
Commonly used for bulk transfer of power applications utilizing overhead lines over long distances providing low cost, fully functional, reliable and environmentally friendly way to transmit power.

Submarine/Land Cable Scheme
Where the power exchange or transmission crosses water, or an environmentally sensitive region, cables may be the favored method of interconnection between the HVDC Converter Stations. HVDC transmission is particularly attractive and may be the only technically feasible method of transmitting power using cables.
HVDC Switches Overview

Switches for HVDC applications are designed to close and open very rapidly in case of fault or for maintenance purposes. The switches may have to commutate load current while maintaining the flow of power within DC substation and its availability.

All HVDC switches are activated by the highly reliable spring-spring mechanism and benefit of a huge experience and installed base of AC circuit-breaker technology delivered worldwide in regards to design technology, to quality in terms of supplier qualification, assembly processes and ISO conformity.

Types of HVDC Switches

- HVDC Switches
 - Neutral Bus Ground Switch (NBGS)
 - Neutral Bus Switch (NBS)
 - Ground Return Transfer Switch (GRTS)
 - Metallic Return Transfer Switch (MRTB)
- Bypass Switch (BPS)
- High Speed Switch (HVHSS)
- Fast Acting Discharge Switch (FADS)

Key Features

- DC current switching
- Dielectric withstand in open position over long time intervals
- High creepage distances require a long column
- Optional Features:
 - Use of surge arresters in addition to capacitors
 - Low temperature or seismic applications
 - CBWatch3 Monitoring System
 - Closing resistors for special applications

HVDC Substation Bina, India
HVDC Switches

Where more than one HVDC Pole share a common transmission conductor (typically the neutral) it is advantageous to be able to commutate the DC current between transmission paths without interrupting the DC power flow.

Figure 1 shows a typical Single Line Diagram (SLD) for a HVDC transmission scheme utilizing DC side switchgear. The following switches can be identified from Figure 1.

NBGS – Neutral Bus Ground Switch
This switch is normally open but when closed it solidly connects the converter neutral to the station earth mat. Operation with this switch can normally be maintained if the converter can be operated in a bipole mode with balanced currents between the poles, that is, the DC current to earth is very small. The switch is also able to open, commutating a small DC unbalance current out of the switch and into the DC circuit.

NBS – Neutral Bus Switch
A NBS is in series with the neutral connection of each pole. In the event of an earth fault on one pole, that pole will be blocked. However, the pole remaining in service will continue to feed DC current into the fault via the common neutral connection. The NBS is used to divert the DC current away from the blocked pole to ground.

GRTS – Ground Return Transfer Switch
The connection between the HVDC conductor and the neutral point includes both a high voltage disconnector and a GRTS and is used as part of the switching operation to configure the HVDC scheme as either a ground return monopole or a metallic return monopole. The disconnector is maintained open if the HV conductor is energized in order to isolate the medium voltage GRTS from the high voltage. The GRTS is closed, following the closing of the disconnector in order to put the HV conductor in parallel with the earth path. The GRTS is also used to commutate the load current from the HV conductor transferring the path to the earth (or ground return) path. Once current flow through the HV conductor is detected as having stopped, the disconnector can be opened, allowing the HV conductor to be re-energised at high voltage.

MRTB – Metallic Return Transfer Breaker
The MRTB is used in conjunction with the GRTS to commutate the DC load current between the earth (ground return) and a parallel, otherwise unused, HV conductor (metallic return).

The MRTB closes in order to put the low impedance earth return path in parallel with the metallic return path. The MRTB must also be able to open, causing current flowing through the earth return to commutate into the much higher impedance metallic return path.

DC Switch in Champa, India
Bypass Switch (BPS) and Fast Acting Discharge Switch (FADS)

This switching device can be used either as a HVDC by-pass or a fast discharge switch.

As a by-pass switch, it is connected across each converter valve group in HVDC schemes using more than one independent converter per pole. It shall close rapidly to by-pass a converter group that is being taken out of service and commutate the current back into a valve group that is being taken back into service.

As a fast acting discharge switch, it is connected between one pole and a resistance connected to the ground. It remains opened until a fault occurs in AC network. AC circuit-breaker clears the fault, but a trapped charge remains in the HVDC line and shall be discharged before the AC circuit-breaker re-close and re-energize the poles 300 ms later: for it, fast acting discharge switch shall perform a fast CO within these 300 ms to discharge and re-isolate the pole from the ground.

High Speed Switch

High Voltage High Speed Switches (HVHSS) can be used either as a line paralleling switch or either as converter paralleling switch.

As a line paralleling switch, it is connected in series to one or more high voltage pole conductors allowing one or more line to be connected in parallel or to revert to a single line operation while maintaining the flow of HVDC power.

As a converter paralleling switch, it is connected in series to each converter at the high voltage DC terminal where 2 or more converters are connected in parallel onto a common pole conductor. It is designed to allow additional converter(s) to be connected in parallel or to disconnect some of them while conducting the load current.

Technical Data

<table>
<thead>
<tr>
<th>RATINGS</th>
<th>HVDC SWITCHES</th>
<th>BPS AND FADS</th>
<th>HVHSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Up to 170 kV</td>
<td>Up to 800 kV</td>
<td>Up to 400 kV</td>
</tr>
<tr>
<td>Current</td>
<td>Depending on applications and project requirements - several currents available on demand.</td>
<td>-50 °C to +50 °C</td>
<td>-50 °C to +50 °C</td>
</tr>
</tbody>
</table>
HVDC Disconnectors Overview

Disconnectors for HVDC applications are designed to specific constraints and requirements typical for DC applications, that are quite different compared to AC applications. They are requested to withstand DC voltage open gap and to ground to ensure safety for the people in the substation and to permit proper and safe layout configuration. In some cases, like for filter applications, they are requested to break a sum of harmonic currents at a certain voltage (ampliy smaller than the rated voltage of the disconnector) due to the ripple created by harmonics on the reactances. All these DC disconnectors take benefit of huge experience and installed base of AC disconnector technology delivered worldwide in regards to design technology and quality e.g. supplier qualification, assembly processes or ISO conformity.

Types of HVDC Disconnectors

- HVDC Disconnectors
- HVDC Earthing Switch
- By-Pass Disconnector
- HVDC Filter DSC and Earthing Switch
- LVDC DSC and Earthing Switch
- LVDC Filter DSC and Earthing Switch
- Valve Hall Earthing Switch

Key Features

- Self protected design of contacts (L-type contact) preventing pollution deposit and hot spots
- HVDC design of post insulators
 - High value of minimum creepage distance enforcing height
 - Dedicated shed profiles
- Specific layout design (also 2 or 3 post insulators for each contact side)
- High seismic performances
- Special design of anti-corona rings

Fig. 5: Single-Line-Diagram (SLD) of a HVDC transmission scheme indicating the typical location of DC Disconnectors and Earthing Switches
Knee Type Disconnector

GE’s knee type disconnector SPO/SPOL has been designed with one rotating and two fixed insulators. Thanks to its folding arm design (knee), it requires limited overhead clearance and a very short phase-to-phase distance. The outstanding gap factor allows a relatively short air gap and a lighter arm. No electrodes are needed in the middle.

The center of gravity is quite low, with great advantages for balancing, seismic withstand and operating torque. The low operating torque permits sure operation using a motor drive mechanism as well as easy manual operation and it does not stress the rotating insulator. The design is contact rebound free resulting in very smooth movement and a relatively fast operation (about 10–15 s for a 550 kV disconnector).

L-Contact

The main contact can be of the L- type, the solution patented by GE helping to ensure highest protection against air pollution and ice. The L-Contact is also maintenance free and therefore represents the best technical choice for DC applications.

Center Break Disconnector

The center break disconnector type S2DA is the most commonly used and economical disconnector, but requires an increased phase-to-phase distance. In the center break design the two arms rotate and the disconnector opens in the center.

Vertical Break Disconnector

The vertical break disconnector has one rotating and two fixed insulators. The double movement of the blade ensures excellent performance in terms of ice breaking and short-circuit withstand. The vertical break requires a minimal phase-to-phase distance and the main contact can be of the L-type.

Valve Hall Earthing Switch

The valve hall is an important component of the HVDC system. The grounding of a valve hall’s elements is ensured by highly customized earthing switches.

Two different earthing switch designs have been developed by GE:

- Wall mounted “grasshopper”
- Floor mounted “semi-pantograph”

Technical Data

<table>
<thead>
<tr>
<th>RATINGS</th>
<th>KNEE TYPE DISCONNECTOR</th>
<th>CENTER BREAK DISCONNECTOR</th>
<th>VERTICAL BREAK DISCONNECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>245 to 800 kV</td>
<td>36 to 550 kV</td>
<td>72.5 to 800 kV</td>
</tr>
<tr>
<td>Current</td>
<td>Up to 6,600 A (8,000 A for short period)</td>
<td>Up to 5,000 A</td>
<td>Up to 5,000 A</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-50 °C to +50 °C</td>
<td>-50 °C to +50 °C</td>
<td>-50 °C to +50 °C</td>
</tr>
</tbody>
</table>
Manufacturing Excellence

GE’s investments in Research and Development (R&D) are significant, allowing utilities and grid operators to benefit from the latest technologies and innovations.

With more than a century of designing, developing and manufacturing products for the electrical grid, GE’s manufacturing centers of excellence are located globally and are specialized, state-of-the-art facilities with ISO® 9001 certification.

The facilities for research and development and manufacturing are based in the United States, Canada, Brazil, India, Indonesia, Italy, France, Germany, Russia, China and Japan. The same industrial concept is applied in all locations.

Advanced Production System

The Advanced Production System (APS), is the framework for contemporary manufacturing excellence in all Grid Solution manufacturing sites. It is based on lean tools for continuous improvement of safety, quality, cost and delivery.

APS brings together a wide range of best practices and standards in seven domains such as Basics, Environmental, Health & Safety (EHS), Supply Chain, Project Delivery, Manufacturing, and Quality & Leadership to create and sustain world class manufacturing excellence.

Competence Center for Live Tank Circuit Breakers in Villeurbanne, France
Certified Quality

Research and Development (R&D), manufacturing and commercial units are fully certified according to ISO 9001. This means that during the entire production process, all employees, all equipment and all of the company’s operations are dedicated to the highest quality standards and permanent improvement.

The Quality Management System assures the highest level of quality at every step of the value chain.

Qualified staff on the production lines have proven experience in the assembly of circuit breakers and disconnectors. For each step of the production process, detailed operational instructions are used at the respective workstation. Complete traceability of material and workmanship is ensured by means of robust processes and quality controls.

Extensive Testing Capabilities

All switchgear is type tested in world class laboratories such as KEMA, CESI and CERDA, in full compliance with international standards such as IEEE, IEC, GOST and DL standards. Specific homologation processes (additional tests, specific reports) are provided as per customer requirements.

Following tests are performed according to the latest international standards:

- Seismic performance
- Dielectric performance
- Mechanical endurance test
- Power testing
- Temperature rise test
- Environmental testing

High Voltage Testing of Live Tank Circuit Breakers

Outdoor Testing for Disconnectors

Competence Center for Disconnectors in Noventa di Piave, Italy
Optional Features for Advanced Systems Capabilities

DWatch
DWatch performs permanent real time monitoring of operational parameters of the disconnector and records all operating curves. The DWatch also controls the speed of the live part during opening and closing in a specific programable manner for all types of disconnectors.

CBWatch3
CBWatch3 monitors critical health indicators of HVDC Switches, such as gas density, timing, travel and contact wear. This allows users to optimize and schedule maintenance programs accordingly. The collected data can easily be integrated to asset management programs.

Low Temperature Applications
HVDC switches provide sealing and breaking performance as well as mechanical operations guaranteed at very low temperatures, down to -50°C with gas mixture. This ensures a reliable performance even in the harshest environments around the world. Same performances down to -50°C are also guaranteed by GE Disconnectors.

Ice Breaking
HVDC Disconnectors are available with high ice breaking performances in accordance with IEC and IEEE. Ice breaking up to 42 mm can be provided.

High Seismic Ratings
HVDC Switches are available with high seismic performance in accordance with IEEE, ETG, IEC, etc. This standard qualifies the switches for earthquake levels up to 0.5 g. Higher ratings are available on demand.

Pre-Insertion Resistance
Series closing resistors limit overvoltages associated with switching of unloaded transmission lines. The resistors reduce voltage disturbances and increase the life of associated equipment in the substation.

Filter Breaking Device
The opening of the filter consist on a breaking operation of a sum of harmonic currents at a certain voltage (amply smaller than the rated voltage of the disconnector) due to the ripple created by this harmonics on the reactances. SPOL disconnector can be equipped with dedicated fast whip device for such duty.
Value Added Services

Optimizing Asset Reliability, Up-Time and Performance

Dedicated project teams are located in all regions throughout the world, providing support and expertise to assist customers during different project phases. Local field service teams are also available worldwide, providing immediate support, training and supervision.

GE offers complete services for all current and legacy air-insulated switchgear including: DC switches, dead tank and live tank circuit breakers, generator circuit breakers, compact and hybrid switchgear, disconnect switches and instrument transformers.

Asset Performance Management

As part of optimizing the maintenance and asset replacement strategies, GE employs stress assessment analysis, SF₆ monitoring and online condition monitoring to allow comprehensive centralized asset management.

Renovation & Modernization

GE has the technical expertise to deliver customized engineered solutions to extend the life of ageing equipment. GE Service Teams are experienced in solving obsolescence issues and overhauling substation equipment as required.

Maintenance and Spare Parts

Maximizing the life cycle performance of circuit breakers through the right maintenance strategy, strategic spare parts stock and toll-free 24/7 hotline.

Technical Training

GE provides on site technical training such as modular and competence development training as well as e-learning and educational partnerships. These skills not only enhance team knowledge, but increase productivity.
GE’s HVDC References

GE has designed and supports an installed HVDC capacity of more than 35 GW globally in a broad range of applications and environments. The list below details are a selected representation of HVDC projects with DC Switchgear, a complete list is available upon request.

1. Canada
 Project: Nelson River
 Rating & Year: Bipole 1, 1973

2. Canada
 Project: Nelson River
 Rating & Year: Bipole 2, 1978

3. Mozambique
 Project: Cahora Bassa
 Rating & Year: +/- 533kV, 1978

4. Germany
 Project: GK Dürnrohr
 Rating & Year: +/-145kVdc, 1983

5. France-Italy
 Project: HVDC Cross-Channel Cable
 Rating & Year: 1986

6. USA
 Project: McNeill
 Rating & Year: +/-270kVdc, 42kV, 1989

7. China
 Project: Cheju-Haenam Cable
 Rating & Year: +/-180kV, 1999

8. India
 Project: Vizag
 Rating & Year: +/-205kV, 1999

9. India
 Project: Chandrapur–Padghe
 Rating & Year: +/-500kV, 1999

10. Brazil-Uruguay
 Project: Rivera
 Rating & Year: +/-20 kV, 2000

11. India
 Project: Sasaram
 Rating & Year: +/-205kVdc, 2001

12. Italy-France
 Project: Saco
 Rating & Year: +/-245kVdc, 2003

13. Denmark-Sweden
 Project: Kontin Skan
 Rating & Year: +/-300kVdc, 2006

14. Saudi Arabia
 Project: CGCIA
 Rating & Year: +/-420kVdc, 2007

15. Germany
 Project: Nord EON
 Rating & Year: +/-245kVdc, 2008

16. China
 Project: Xianggaba-Shangao
 Rating & Year: +/-800kVdc, 2009

17. China
 Project: Hulunbar-Lianoning
 Rating & Year: +/-515kVdc, 2009

18. Italy
 Project: Sapei
 Rating & Year: +/-515kVdc, 2010

19. Uruguay-Brazil
 Project: Melo
 Rating & Year: +/-515kVdc, 2010

20. Finland-Sweden
 Project: Fenno-skan
 Rating & Year: +/-515kVdc, 2010

21. China
 Project: 3-Gorges
 Rating & Year: +/-515 kV, 2010

22. Brazil
 Project: Rio Madeira 1
 Rating & Year: +/-600kVdc, 2011

23. Brazil
 Project: Rio Madeira 2
 Rating & Year: +/-600kVdc, 2011

24. Sweden
 Project: Danderyd-Jarva
 Rating & Year: +/-300kVdc, 2011

25. Germany
 Project: Dolwin 1
 Rating & Year: +/-300kVdc, 2013

26. Germany
 Project: Dolwin 2
 Rating & Year: +/-300kVdc, 2013

27. China
 Project: Nuozhadou Guangdong
 Rating & Year: +/-500kVdc, 2012

28. Denmark-Norway
 Project: Skagerrak
 Rating & Year: +/-300kVdc, 2013

29. Germany
 Project: Dolwin 3
 Rating & Year: +/-326kVdc, 2014

30. China
 Project: Shuanglong-Zhezi
 Rating & Year: +/-800 kV, 2013

31. India
 Project: Champa 1
 Rating & Year: +/-800kVdc, 2015

32. UK-Scotland
 Project: Western Link
 Rating & Year: +/-600kVdc, 2013

33. Italy-Montenegro
 Project: Monita
 Rating & Year: +/-500kVdc, ongoing

34. USA
 Project: Monita
 Rating & Year: +/-500kVdc, ongoing

35. Sweden
 Project: South West Link
 Rating & Year: +/-315kVdc, 2014

36. Italy-France
 Project: FIL
 Rating & Year: +/-325kVdc, ongoing

37. China
 Project: Luoxi-Luoping
 Rating & Year: +/-400kVdc, 2015

38. Canada
 Project: Lower Churchill
 Rating & Year: +/-350kVdc, ongoing

39. Korea
 Project: Dongjin-Godeok
 Rating & Year: +/-530kVdc, ongoing

40. India
 Project: Champa 2
 Rating & Year: +/-800kVdc, ongoing

41. Germany
 Project: Borwin 3
 Rating & Year: +/-362kVdc, ongoing

42. UK
 Project: Caithness- Moray-Shetland
 Rating & Year: +/-440kVdc, ongoing

43. China
 Project: Nanjing
 Rating & Year: +/-800kVdc, 2016

44. Brazil
 Project: Belo Monte 1
 Rating & Year: +/-800kVdc, ongoing

45. Belgium-UK
 Project: Nemo
 Rating & Year: +/-412kVdc, ongoing

46. China
 Project: Dianxiaobei
 Rating & Year: +/-800kVdc, ongoing
Case Study - XS 800 Project China

The Xiangjiaba/Shanghai ±800 kV (XS 800) HVDC transmission line was ordered by the State Grid Corporation of China to connect the Xiangjiaba hydroelectric power plant to the Shanghai industrial and commercial centre. It is one of the longest power transmission links in the world, surpassed only by the Rio Madeira HVDC link (Brazil).

GE designed, tested and installed a knee type disconnector with an equilateral triangle insulator support in order to ensure better mechanical behaviour and more flexibility in the choice of insulators (both porcelain and composite allowed).

Technical Data

<table>
<thead>
<tr>
<th>DC VOLTAGE</th>
<th>AC VOLTAGE (TERMINALS)</th>
<th>DC CURRENT</th>
<th>POWER</th>
<th>DC LINE TYPE</th>
<th>DC LINE TOPICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>±800 kV</td>
<td>525 kV</td>
<td>4,497 A</td>
<td>6,400 MW</td>
<td>Bipolar overhead line</td>
<td>2,071 km length</td>
</tr>
</tbody>
</table>

Energized SPOL at XS 800 Project in China
Digital Tools that simplify the entire product lifecycle.

Get your Grid Passport and explore 24/7 Online.

Explore Grid Challenges
"Fly-Through" an interactive power system that features an in-depth look at the challenges of modernizing the grid from the power plant to the power consumer.

Discover Solutions
Get hands-on with GE solutions through a broad range of advanced digital tools including real-time 3D product explorers and interactive episodes.

Configure & Buy
Easily specify, configure, and buy GE solutions 24/7 online with interactive selector guides, simple to use product configurators, and our online store.

Learn & Implement
Access videos anytime, anywhere, and learn advanced power system applications from industry experts; get quick answers from technical experts, and more.

Access our digital tools online at GEGridSolutions.com

GE
Immeuble le Galilée
51 esplanade du Général de Gaulle
92907 La Défense Cedex
France
Tel: +44 (0)1785 250 070

GEGridSolutions.com/Contact

GE and the GE monogram are trademarks of General Electric Company. GE reserves the right to make changes to specifications of products described at any time without notice and without obligation to notify any person of such changes.

Copyright 2017, General Electric Company. All Rights Reserved.