MiCOM Agile
P543-P546

Current Differential Protection
with Optional Subcycle Distance

The MiCOM P543-P546 is designed for all overhead line and cable applications, interfacing readily with the longitudinal (end-to-end) communications channel between line terminals.

Tripping uses a proven characteristic comparing differential current with through current. The phase differential element offers consistent detection of solid and resistive faults. An innovative neutral current differential element complements phase differential in the case of high resistance faults.

A full range of back-up protection is integrated, enhancing the dependability of the relay. The P543 - P546 range includes differential main protection, with subcycle distance protection as an option.

Application

Adapted to suit many different substation and protected unit topologies:
- In-zone transformer-feeder applications (P543/P545 models)
- Breaker and a half, or mesh feeding with two sets of CT inputs per end, with settable independent CT ratios (P544/P546 models)
- Compensates for line CT ratio mismatches and capacitive charging current

Options

Distance Protection:
- High speed operation in less than one cycle
- Load blinder prevents spurious trips cascading through the network in extreme conditions such as on the verge of a blackout

Key Benefits
- Simple set mode: the relay determines its own settings from protected line data
- Integral teleprotection via MODEM, fibre, or MUX channel
- Compatibility with modern 2 Mbps communications equipment
- IEC 61850-9-2 LE process bus ready

Protection and Control

- Current Differential Protection applicable to lines and cables, long or short, strong and weak infeeds
- Transient bias feature reduces CT requirements by up to 25%
- Subcycle current differential protection - without distance protection
- Multi-shot autoreclosure with check synchronism and adapting breaker closing
- Improved system stability by CB failure fast reset element (< 0.75 cycle)

Advanced Communications

- Up to 32bits/channel InterMiCOM option for end-to-end protection communications; Readily interfaces with end-to-end communications channels (56/64 kbps or E1 2 Mbps, IEEE C37.94™)
- Wide range of supported protocols Courier/K-Bus, IEC 60870-5-103, DNP 3.0 (EAI-485 or Ethernet) and IEC 61850
- Advanced IEC 61850 Edition 2 implementation with IEEE 1588 support
- Redundant communications with zero downtime using optional PRP/HSR technology
Functional Overview

<table>
<thead>
<tr>
<th>ANSI</th>
<th>IEC 61850</th>
<th>Features</th>
<th>P543</th>
<th>P544</th>
<th>P545</th>
<th>P546</th>
</tr>
</thead>
<tbody>
<tr>
<td>OptGGIO</td>
<td>Opto coupled logic inputs</td>
<td>16</td>
<td>16</td>
<td>32</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>RyGGIO</td>
<td>Standard relay output contacts</td>
<td>14</td>
<td>14</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Optional high-speed, high-break output contacts</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two breaker configurations</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clockwise and anticlockwise phase rotation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single and three-pole tripping</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PhsPDI/F</td>
<td>Phase segregated / Neutral current differential</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2 and 3 terminal lines/cables</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcycle current differential</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load blinder</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suitable for use with SDH/SONET networks (using RT43x)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVT transient overreach elimination</td>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance and DEF comm.s. aided schemes, PUTT, POTT, Blocking, Intertrip, Weak infeed</td>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch on to fault</td>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power swing blocking</td>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out of step tripping</td>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRIG-B time synchronisation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase overcurrent stages</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth/ground overcurrent stages</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitive earth fault (SEF) stages</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-impedance restricted earth fault protection</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative sequence overcurrent stages</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broken conductor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal overload</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undervoltage protection stages</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overvoltage protection stages</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual voltage protection stages</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compensated overvoltage protection stages</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underfrequency protection</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overfrequency protection</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate of change of frequency protection</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-speed breaker fail</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoreclose - shots supported</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoreclose (CBs controlled)</td>
<td>1</td>
<td>1 or 2</td>
<td>1</td>
<td>1 or 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check synchronising</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative setting groups</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event records</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disturbance recorder: samples per cycle</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of channels: Analogue/Digital</td>
<td>16/64</td>
<td>16/64</td>
<td>16/64</td>
<td>16/64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage transformer supervision</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT supervision (Including patented differential CTS)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit-breaker condition monitoring</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InterMiCOM® teleprotection</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key [-]: denotes optional
Applications

Differential Protection (Phase and Neutral)
The P54x provides true, phase-segregated current differential protection. The measurement algorithm is extremely reliable, offering fast detection of internal faults and stability for external faults. The algorithm has a dual slope percentage bias restraint, as shown in Figure 2. An internal fault will generate differential current. The initial slope ensures sensitivity to low current faults, whereas the 2nd slope is raised to counter the effects of Current Transformer (CT) saturation. A transient Bias technique is used to overcome the effects of CT saturation, without compromising the operating time for internal faults.

The P54x also provides neutral current differential protection, which complements phase current differential during high resistance faults (up to 500 Ohm in 500 kV systems). The neutral current differential has a single slope characteristic with a cut-off setting.

Subcycle differential protection available in the P543 and P545
Longitudinal Signaling Topology

Differential protection requires the transfer of current vectors between all ends of the scheme. Figures 3a - 3d show typical configurations. Figure 3a shows a HV/EHV scheme where either a direct fibre optic or a multiplexed link may be used as the chosen channel. Figure 3b shows the triangulated connection required in 3-terminal applications.

System Application Examples

Transformer

Figure 4 shows a protected line and transformer unit. In such applications the P543 or P545 are chosen, as these models compensate for the vector group shift and zero sequence filtering effects of the in-zone transformer. Second harmonic restraint or blocking is used to stabilise the protection against magnetising inrush currents. A fifth harmonic blocking feature can also be used to inhibit the differential protection during transformer overfluxing conditions.

Breaker and a Half, Mesh or Ring Feeding

The P544 and P546 offer two sets of CT inputs for connections as in Figure 5. The two CTs may have different ratios, which are independently settable in the relay. This greatly assists stability, as proper bias current will be measured for through faults flowing bus-bus at one line end.

CT knee-point voltage mismatch can thus be tolerated and the risks in finding the best equipotential point for connection of CT secondaries in parallel become a thing of the past. Importantly, in the event of breaker failure, the relays are able to identify the individual failed breaker. If the line is disconnected (line isolator open), the relay provides differential protection for the stub zone.
Long Line Applications

Capacitive charging current compensation allows the current differential protection to be set according to fault detection requirements - with no compromise to account for charging currents. The compensated overvoltage function protects the line from Ferranti overvoltages by calculating the positive sequence voltage at the remote terminal.

Network Extensions

All P54x models offer applications for two and three terminal lines. A two-terminal scheme is easily reconfigured if a new tee connection is added as a third end.

The P54x compensates for line CT ratio mismatches, even for 1 A and 5 A differences between line ends. This facilitates easier retrofitting and network extensions.

GPS Synchronised Differential

Figure 6 shows a typical SDH/SONET ring employing self-healing. In this topology, the traditional propagation delay measurement ("Ping-Pong" technique), which relies on the assumption of equal transmit and receive path delays, cannot be used.

Real system experience has shown that the difference between a transmit signal sent via the direct path (MUX node B-C) and a receive via the standby path (nodes C-D-E-F-A-B) can be in excess of 5 ms. Path differences typically summate, based on 1.8 ms per 100 km and 0.5 ms insertion time per node.

It would not be acceptable to desensitise the protection to offset such a difference, therefore the P54x offers a special optical input which accepts a GPS clock pulse input. At all line ends, a Reason RT430 GPS clock is used to ensure that a common clock reference is used for all timings. This allows the relays to measure the real propagation delay in either direction.

Patented fallback techniques ensure continuity of differential protection, even if GPS outages are encountered.

Communications Interfacing for Protection Schemes

To ensure compatibility with standard communications equipment, the MiCOM P54x Agile series is designed to work within the bandwidth of a 56/64 kbit/s or 128 kbit/s, pulse code modulation (PCM) channel. A direct fibre optic connection to a MUX is possible if the MUX is IEEE C37.94™ compliant.

Electrical interfaces conforming to ITU-T G.821 recommendations for V.35, G.703 (64 Kbps or 2 Mbps E1) and X.21 are available via the P59x series of interface units.

In direct fibre optic applications, 1300 nm and 1550 nm channel options are available. The transmitters are designed with an "optical budget" to support up to 150 km.

Communications supervision

Dependable communications are essential for high-performance differential protection. Each active longitudinal channel is independently monitored and reports error statistics in line with guidance from ITU-T G.821.

Various means exist to implement "hot-standby" protection in the event of degraded communications. Dual redundant communications channels could be considered, thus providing duplicated links via diverse communications paths. In such instances, CH1 and CH2 protection channels will both be used.

Alternatively, back-up distance or overcurrent elements can be switched into service, either as permanent parallel main protection, or temporary protection only during channel outages.

Differential protection calibrated in the differential plane - no compromise on sensitivity

Figure 6 SDH/SONET networks
Distance Protection (Optional)

Five zones of protection are provided. A superimposed current phase selector detects the faulted phase(s) and controls which distance elements will initiate a trip. Combined with the directional decision from a proven delta principle, secure operation of distance zones is assured. The relay allows mho and quadrilateral (polygon) characteristics to be independently selected for the phase and ground distance elements. The mho shown in Figure 7 uses well-proven principles to provide dynamic expansion for faults off the characteristic angle.

![Figure 7 Mho characteristics](image)

The quadrilateral characteristics (Figure 8) provide enhanced fault arc resistance coverage. An adaptive technique is used to tilt the reactance reach line of each zone and eliminate under/overreaching effects due to prefault load flow.

Zones 3/P are independently selectable: Forward/Reverse/Offset.

![Figure 8 Quadrilateral characteristics](image)

Blinder characteristics (Figure 9) prevent false tripping due to encroachment of heavy loads.

![Figure 9 Load blinder](image)

Power Swing Blocking (PSB)
The MiCOM P54x Agile recognises power swings quickly, by means of the superimposed currents measured by the phase selector. A conventional PSB element based on the impedance band is provided to detect slow power swings.

The distance trip time for faults occurring during a power swing remains subcycle.

Out-of-Step Tripping (OST)
If severe disturbances cause asynchronism risks in transmission networks, it may be necessary to separate into islands using the OST feature. Predictive mode OST initiates separation before damage occurs.

Distance Schemes
Pre-configured distance schemes allow single and 3-phase tripping, with or without a signaling channel.

A settable alternative distance scheme initiates all the zone timers simultaneously and guarantees faster tripping times for evolving faults.

Trip on close logic allows accelerated tripping to be selected following manual or auto-reclose. Standard distance and DEF schemes may be assigned to traditional hardwired I/O, or routed using InterMiCOM64 teleprotection.

Direct transfer tripping, permissive underreach (PUR), permissive overreach (POR) and blocking schemes are supported.

Open breaker, weak infed echo and weak infed trip features are menu options.

Directional Earth Fault (DEF)
The DEF element can be used within the aided schemes to detect high resistance ground faults.

The innovative “Virtual Current Polarising” feature ensures correct operation in the solidly earthed system when the fault generates negligible zero or negative sequence voltage. The “Virtual Current Polarising” feature may be switched-off when used in non-solidly earthed systems.

InterMiCOM Teleprotection
InterMiCOM allows high performance permissive and blocking type unit protection to be configured, plus the transfer of any digital status information between two or three line ends (up to 32bit/channel end-to-end signals).

Intertripping is supported too, with channel health monitoring and cyclic redundancy checks (CRC) on the received data for maximum message security.

All your main and backup protection in one device - differential, distance or both - to minimise training needs and spares holdings.
Typical Protection Trip Times

Differential protection trip times for any point-on-wave, including the closure time of a conventional trip relay contact:
- 24 to 30 ms (50 Hz system)
- 19 to 25 ms (60 Hz system)

Differential protection trip times for any point-on-wave, including the closure time of a high break trip relay contact:
- 10 to 20 ms (50 Hz system, subcycle differential)
- 9 to 18 ms (60 Hz system, subcycle differential)

Distance protection trip times for any point-on-wave, including the closure time of a conventional trip relay contact:
- 13 to 20 ms (50 Hz system)
- 13 to 17 ms (60 Hz system)

Backup Protection
- Four stages of both phase and Earth (ground) fault protection
- Negative sequence overcurrent and SEF (0.5% In sensitivity)
- Phase under/overvoltage protection
- Broken conductor protection
- Two stage high speed circuit-breaker failure protection

IEC 61850-9-2 LE Process Bus Interface

An optional process bus interface is available, allowing the relay to receive current and voltage sampled data from non-conventional instrument transformers such as optical and Rogowski devices. In other digital substation architectures, the -9-2 data is generated by merging units in the yard which digitise conventional 1 A/5 A and 100/120 V secondaries, for safer and more economical cross-site communications to IEDs via fibre optics.

Grid Solutions’ -9-2 LE implementation was designed to be especially resilient and reliable in the presence of “noise”, such as latency, jitter or missing/suspect data.

Supervisory Functions

VT Supervision
Voltage transformer supervision is provided to detect loss of one, two or three VT signals for line VTs.

CT Supervision
Current transformer supervision is provided to detect loss of phase CT input signals. Using the patented differential CTS feature, the relay performs an intelligent comparison of the negative sequence current imbalance at line ends to determine which, if any, CTs have failed. The CTS ensures real-time stability of the differential elements, in the same manner as the VTS ensures distance element security.

Control

User Interface
Integrated user function keys and tri-colour programmable LEDs provide a cost-effective solution for full feeder scheme applications.

The ten function keys operate in two modes, normal and toggled, with an associated LED for clear indication of the logic status.

User Programmable Curves
A user-programmable curve gives the user additional flexibility, allowing easy customisation of the protection and control functions.

Single breaker autoreclose
(with check synchronism (P543 & P545))
The user may select a single, two, three or four shot autoreclose cycle.

Dual Breaker Autoreclose
(with check synchronism (P544 & P546))
The following additional features are offered in the P544 & P546 models to permit two breaker reclosing in a leader/follower scheme:
- Two CB Control - CB1 and CB2 are assigned
- Individual selection of recloser 'on or off'
- Leader-follower configuration
- Independent lockout and reset per breaker

Programmable Scheme Logic

Powerful graphical logic allows the user to customise the protection and control functions (see Figure 10). The logic includes 32 timers, gates (OR, AND, MAJORITY) and set/reset latch functions, with the ability to invert the inputs and outputs and provide feedback.

Figure 10 Programmable scheme logic

The system is optimised to ensure that the protection outputs are not delayed by PSL operation. The programmable scheme logic is configured using graphical S1 Agile software. The relay outputs may be configured as latching (lockout) or self-reset. All aspects of MiCOM P40 IED configuration are managed using the S1 Agile software (see Figure 11).

Figure 11 S1 Agile: a powerful and intuitive PC-toolsuite

Hot Key Menu
Trip and close commands are facilitated from front panel "hotkeys", to allow direct CB control without the need to navigate a menu. Other in/out, on/off and enable/disable controls are easily programmed.

Measurement and Recording Facilities
All event, fault and disturbance records are time tagged to a resolution of 1 ms. An optional IRIG-B port is available for accurate time synchronisation.
Communications with Remote Operators and Substation Automation

The wide range of communications options, including IEC 61850, provides interfacing with almost any type of Substation Automation System or SCADA system.

The following protocols are available:

- Courier/K-Bus
- IEC 60870-5-103
- DNP 3.0 (EAI-485 or Ethernet)
- IEC 61850

P54x devices can be enhanced with an optional redundant Ethernet board. The redundancy is managed by the market's fastest recovery time protocols: IEC 62439-3 PRP and HSR allowing bumpless redundancy and RSTP, offering multi-vendor interoperability. The redundant Ethernet board supports either modulated or demodulated IRIG-B and the SNTP protocol for time synchronisation. The redundant Ethernet board also has a watchdog relay contact to alarm in case of a failure.

Second Rear Courier Port

An additional second rear port can be ordered as an option, designed typically for dial-up modem access by protection engineers/operators when the main port is reserved for SCADA traffic. This port also offers the option of -103 communications when IEC 61850 is the chosen first port protocol.

MiCOM P40 Agile

Grid Solutions’ philosophy is one of continuous improvement in our products and solutions. Our emphasis on communications in MiCOM products has become a focus which secures our leadership in digital substations. To mark this phase of evolution, the “P40 Agile” is now applied to the range. P40 Agile is a mark of performance and quality, only available from Grid Solutions.

Device Track Record - High Speed Transmission Protection

P54x series introduced in 1999. Worldwide application, with over 40,000 units delivered.

Optional distance elements in P54x import P443 MiCOMho subcycle technology.

GEGridSolutions.com

I EC is a registered trademark of Commission Electrotechnique Internationale. IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc. Modbus is a registered trademark of Schneider Automation.

GE and the GE monogram are trademarks of General Electric Company.

GE reserves the right to make changes to specifications of products described at any time without notice and without obligation to notify any person of such changes.

P543-6-Brochure-EN-2018-07-Grid-GA-0672. © Copyright 2018, General Electric Company. All rights reserved.