Air-Core Reactors (ACR) provide a linear response of impedance versus current which is essential for numerous applications. The dry type design is maintenance free and environmentally friendly.

Alstom Grid has more than 50 years’ experience in designing and manufacturing Air-Core Reactors for various market segments around the world, including power generation, T&D networks, industrial facilities, OEMs and electrical test laboratories.

For both industrial environments and networks, Alstom Grid offers a broad range of cost-effective solutions:

- **Current-limiting reactors** limit the fault currents to levels compatible with existing protection/control equipment and as a result provide for a very cost-effective solution.
- **Neutral-earthing reactors** are connected between the neutral of a power system and earth to limit the line-to-earth current to a desired value under system earth fault conditions.
- **Smoothing reactors** reduce the harmonic currents and transient overcurrents (ripple) in DC systems.
- **Harmonic filter reactors** are usually connected with capacitors and resistors in filter circuits to reduce harmonic content in the network which cause higher losses, high neutral currents and interference with computer and telecommunications equipment and which are responsible for high harmonic distortion levels.
- **Shunt reactors** compensate for the capacitive currents of long transmission lines or cables, allowing more active energy to pass through the system.
- **Damping reactors** limit the inrush and outrush currents of capacitor banks.
- **Discharge reactors** are used in the bypass/discharge circuit in series compensation systems to limit the capacitor discharge current.
- **Arc-furnace series reactors** provide the necessary power factor correction and limit the unstable arc-furnace current and voltage.
- **Power flow control reactors** control the current into two or more parallel circuits.
- **Motor starting reactors** are connected in series with a motor to limit the inrush current during the motor starting operation.
- **Special applications**: test lab reactors are special ACRs used in test laboratories, mainly for current-limiting purposes. Other devices include duplex current-limiting reactors, split-phase shunt or zero tolerance reactors, etc.

Customer Benefits
- High mechanical strength to withstand elevated short-circuit forces
- Low noise level for noise sensitive applications
- Conservative temperature rise for extended service life
- Customized space saving solutions for installations in compact areas
- Surface treatment for protection against UV radiation and pollution
- Minimum maintenance requirements and environmentally friendly
1. Applications

- **1.1. Current-limiting**

This reactor is series connected to the transmission line or to the feeder for limiting the current under system fault conditions to levels compatible with the protection equipment of the circuit. It is a very cost-effective solution, as it eliminates the need for upgrading the entire switching and protection system when the short-circuit power of the system is increased.

This reactor is designed to offer specified impedance and to withstand the rated and fault (short-time) currents during a specified period of time.

- **1.2. Neutral-earthing**

This single-phase reactor is used to ground the neutral point of three-phase networks to limit the current in the event of a fault between phase and ground. If the circuit is perfectly balanced, the resulting current flow through the reactor will be zero and there will be no losses.

- **1.3. Smoothing**

Smoothing reactors are used to reduce the harmonic currents and transient overcurrents in the DC system. They are used in HVDC links and industrial applications such as rectifiers, traction systems, etc.

- **1.4. Harmonic filtering**

The harmonic currents are distortions introduced to the network as a result of the operation of power electronics devices, large inductive machines, etc.

These harmonic currents create several network problems, such as:
- Greater losses
- Malfunctioning control systems
- High neutral currents
- Interference with computers
- Interference with telecommunications equipment.
Moreover, most utilities impose high fees when a certain HDL (Harmonic Distortion Level) threshold is reached.

Harmonic filter reactors, in association with capacitor units and, occasionally, resistors, create a filter circuit tuned to a certain frequency (resonance frequency) so as to reduce, block or provide a low impedance path for the harmonic currents in the audio frequency range. They are connected either in a parallel or in a series configuration.

Harmonic filters are typically installed in substations, in SVCs (Static Var Compensators) and in HVDC links.

The reactors are designed to meet specific design criteria such as Quality-factor, tolerance of the inductance between phases and of the reactor itself.

Special low Q-factor requirements can be met using an integrated damping circuit.

1.5. Shunt

These reactors are used in a parallel configuration to compensate for the capacitive currents of long transmission lines or cables. As a result, they allow the flow of more active energy through the system. In a low-load situation, shunt reactors may be used to reduce the voltage rise due to capacitance of the transmission line and, in so doing, reduce corona losses.

In many installations, the reactors are connected to the tertiary winding of the high voltage transformer.

1.5.1. SVC (Static Var Compensation)

SVC applications are used to provide dynamic voltage stabilization, improve synchronous stability and operate as steady-state voltage support. The SVC can also be required for dynamic load balancing in industrial installations using large electrical motors and other equipment with variable loads. Typical applications include steel works (steel mills, cranes, arc-furnaces), paper mills, mining companies, etc.

SVC systems provide dynamic power compensation for utilities and industry networks. The main benefits include dynamic voltage support, improvement of system stability, power oscillation damping, reactive power balancing, flicker control and reduction of losses. SVC normally consists of a combination of thyristor-controlled reactors (TCR), thyristor-switched capacitors and reactors (TSC and TSR), mechanically-switched capacitor banks (MSC) and harmonic filters (HF).

1.6. Damping reactor

This reactor is series connected with one or more capacitor banks to limit the inrush currents that occur during their switching operation. It is designed to offer a specified impedance and to withstand the rated current and the fault current in the event of a short-circuit associated with a high frequency discharge current of the capacitor bank.
• **1.7. Discharge reactor**

This application includes reactors for series compensation systems which use capacitor banks series connected to the transmission lines. They:
- improve voltage regulation
- improve system transient stability
- increase transmission line capacity
- reduce electrical losses and save costs.

• **1.8. Arc-furnace series reactors**

The arc-furnace series reactor is connected in series with the electrodes of an arc-furnace used to smelt metals (iron, steel, aluminum, etc.).

![1.8 Arc-furnace reactor](image)

It provides the necessary power factor correction and limits the very unstable arc-furnace current and voltage (flicker), specially during the melting process.

Its winding has a high mechanical strength to withstand the forces caused by the fast switching operations of the electrical arc and the high harmonic currents which are inherent to the electrical arc.

• **1.9. Power flow control**

These reactors are connected in series in a power system (usually a transmission line) to optimize the power flow through modification of the transfer impedance. They change the line impedance characteristic in such a way that the load flow can be controlled, ensuring maximum power transfer over adjacent transmission lines.

• **2.0. Motor starting**

The reactor is series-connected with a motor to limit the inrush current during the motor starting operation. After start-up, the reactor is typically by-passed to limit losses in continuous operation. The reactor can be dimensioned to be short-circuit-proof or not.

• **2.1. Special applications**

2.1.1 **Test laboratory reactors**

Test laboratories often require versatile reactors with taps to adjust the inductance value as well as flexible links to connect the reactor in parallel or in series according to test requirements.

Usually, the rated current value is low, and the BIL or the short-time current is high.

![2.1.1 Special reactor for laboratories](image)
2. Manufacture

Alstom Grid’s reactor windings consist of numerous aluminum or copper conductors connected in parallel. These conductors can be insulated single wires, insulated cables or aluminum profiles separated by fiberglass spacers. The cost-effective solution to be selected, in terms of dimensions and conductor type to be used in each design, depends on the required ratings for the equipment.

For encapsulated design, the conductors are mechanically immobilized and encapsulated by epoxy impregnated fiberglass filaments forming cylinders. Depending on the reactor ratings, one or more of these cylinders are connected in parallel between aluminum or copper spiders. The individual cylinders are separated by fiberglass spacers forming cooling ducts.
3. Accessories

- **3.1. Corona rings**

 When it is necessary to eliminate visible corona, Alstom Grid reactors are provided with suitable corona rings made from aluminum tubes.

- **3.2. Bird barriers**

 On request, Alstom Grid can provide the reactors with bird barriers. The bird barriers consist of a temperature and UV resistant fiberglass reinforced plastic grid with square-shaped openings. The bird barrier does not adversely affect the cooling of the reactor.

- **3.3. Insulators**

 Alstom Grid can provide all the necessary support insulators for the reactors.

- **3.4. Pedestals**

 The pedestals provided with Alstom Grid reactors maintain the magnetic and electrical clearances required by the reactor design to minimize induced losses.

- **3.5. Enclosures**

 On request, Alstom Grid can design and supply reactors with enclosures.

- **3.6. Tapping**

 Reactors can be supplied with taps for variable inductance.

Fig.01. Air-Core Reactor construction

1/ Lifting lug
2/ Spacers (cooling ducts)
3/ Crossarms (spider)
4/ Terminal
5/ Insulator
6/ Extension brackets (pedestals)
Cost-effective Solutions

4. Installation

4.1. Location

Alstom Grid reactors are suitable for either indoor or outdoor installation. Reactors are often installed in existing substations or installed to replace existing reactors. Alstom Grid can design reactors to fit inside space limitations or to be mounted directly onto the existing foundations. Alstom Grid can also design reactors for use inside enclosures. In this case, the reactors are designed to avoid excessive heating.

4.2. Mounting arrangement

Reactors can be mounted individually as single-phase units, side-by-side, or as three-phase stacks, one coil on top of the other. Special mounting arrangements can be offered in case of space limitations. Figure 2 illustrates options available.

4.3. Magnetic clearances

Alstom Grid’s basic guidelines for magnetic clearances are shown in figure 3.

5. Terminal orientation and hole patterns

Alstom Grid reactors are supplied with NEMA or IEC flat pad aluminum or copper terminals. Other standards can be supplied on request. Figures 4 & 5 show typical terminal orientations and hole patterns. Other terminal orientations and hole patterns can be provided on request. For copper connectors, bimetallic tin-plated interfaces can be provided.

6. Painting

After the curing process, the reactor is carefully prepared before painting with a high grade quality enamel, which provides long-term protection against UV radiation. The typical colors are Munsell N6.5 grey, ANSI 70, RAL 7037 and RAL 5024, but other colors can be accommodated on request.

In heavily polluted environments, Alstom Grid uses a special painting process (RTV), and reactors can be provided with a top cover to limit the adverse effects of pollution.
7. Formulas

Some useful formulas:

\[X_L = 2\pi f L \]

\[Q_L = I_N^2 X_L \]

\[Q = \frac{X_L}{R_{ac}} \]

\[\text{Losses} = \frac{Q_L}{Q} \]

Thanks to this fundamental principle, associated with a formal quality management system, all manufacturing units of Alstom Grid are ISO-9001, ISO 14001 and OHSAS 18001 certified.

9. Testing

The reactor test program is carried out using measurement systems specifically developed for the purpose.

Tests comply with international standards such as IEC, ANSI or equivalent.

Numerous type tests have been successfully performed on Alstom Grid reactors at recognized laboratories such as KEMA (Holland), CESI (Italy), IREQ (Canada), CEPEL (Brazil) and LAPEM (Mexico). Type test reports are available on request.

11. R&D activities

Alstom Grid is at the forefront of innovation. The company boasts an international team of research and development experts with many years’ experience in the leading-edge technologies emanating from the predecessor companies. Its aim is to develop innovative, advanced technologies that best meet the market’s needs at affordable cost and respecting the environment. The Alstom Grid R&D community works with a dedicated team focusing on reacting power compensation and harmonic filtering. One of its key ambitions is continued leadership in manufacturing ACR solutions.